1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//! SputnikVM implementation, traits and structs.
//!
//! SputnikVM works on two different levels. It handles:
//! 1. a transaction, or
//! 2. an Ethereum execution context.
//!
//! To interact with the virtual machine, you usually only need to
//! work with [VM](trait.VM.html) methods.
//!
//! ### A SputnikVM's Lifecycle
//!
//! A VM can be started after it is given a `Transaction` (or
//! `Context`) and a `BlockHeader`. The user can then `fire` or `step`
//! to run it.  [`fire`](trait.VM.html#method.fire) runs the EVM code
//! (given in field `code` of the transaction) until it finishes or
//! cannot continue. However [`step`](trait.VM.html#tymethod.step)
//! only runs at most one instruction. If the virtual machine needs
//! some information (accounts in the current block, or block hashes
//! of previous blocks) it fails, returning a
//! [`RequireError`](errors/enum.RequireError.html) enumeration. With
//! the data returned in the `RequireError` enumeration, one can use
//! the methods
//! [`commit_account`](trait.VM.html#tymethod.commit_account) and
//! [`commit_blockhash`](trait.VM.html#tymethod.commit_blockhash) to
//! commit the information to the VM. `fire` or `step` can be
//! subsequently called to restart from that point. The current VM
//! status can always be obtained using the `status` function. Again,
//! see [VM](trait.VM.html) for a list of methods that can be applied.
//!
//! ### Patch: Specifying a Network and Hard-fork
//!
//! Every VM is associated with a `Patch`. This patch tells the VM
//! which Ethereum network and which hard fork it is on. You will need
//! to specify the patch as the type parameter. To interact with
//! multiple patches at the same time, it is recommended that you use
//! trait objects.
//!
//! The example below creates a new SputnikVM and stores the object in
//! `vm` which can be used to `fire`, `step` or get status on. To do
//! this, it must first create a transaction and a block header.  The
//! patch associated with the VM is either `EmbeddedPatch` or
//! `VMTestPatch` depending on an arbitrary block number value set at
//! the beginning of the program.
//!
//! ```
//! extern crate bigint;
//! extern crate sputnikvm;
//!
//! use sputnikvm::{EmbeddedPatch, VMTestPatch,
//!                 HeaderParams, ValidTransaction, TransactionAction,
//!                 VM, SeqTransactionVM};
//! use bigint::{Gas, U256, Address};
//! use std::rc::Rc;
//!
//! fn main() {
//!   let block_number = 1000;
//!   let transaction = ValidTransaction {
//!     caller: Some(Address::default()),
//!     gas_price: Gas::zero(),
//!     gas_limit: Gas::max_value(),
//!     action: TransactionAction::Create,
//!     value: U256::zero(),
//!     input: Rc::new(Vec::new()),
//!     nonce: U256::zero()
//!   };
//!   let header = HeaderParams {
//!     beneficiary: Address::default(),
//!     timestamp: 0,
//!     number: U256::zero(),
//!     difficulty: U256::zero(),
//!     gas_limit: Gas::zero()
//!   };
//!   let vm = if block_number < 500 {
//!     SeqTransactionVM::<VMTestPatch>::new(
//!       transaction, header);
//!   } else {
//!     SeqTransactionVM::<EmbeddedPatch>::new(
//!       transaction, header);
//!   };
//! }
//! ```
//!
//! ### Transaction Execution
//!
//! To start a VM on the Transaction level, use the `TransactionVM`
//! struct. Usually, you want to use the sequential memory module
//! which can be done using the type definition
//! `SeqTransactionVM`.
//!
//! Calling `TransactionVM::new` or `SeqTransactionVM::new` requires
//! the transaction passed in to be valid (according to the rules for
//! an Ethereum transaction). If the transaction is invalid, the VM
//! will probably panic. If you want to handle untrusted transactions,
//! you should use `SeqTransactionVM::new_untrusted`, which will not
//! panic but instead return an error if the transaction is invalid.
//!
//! ### Context Execution
//!
//! To start a VM on the Context level, use the `ContextVM`
//! struct. Usually, you use the sequential memory module with the
//! type definition `SeqContextVM`. Context execution, as with other
//! EVM implementations, will not handle transaction-level gas
//! reductions.

#![deny(unused_import_braces, unused_imports,
        unused_comparisons, unused_must_use,
        unused_variables, non_shorthand_field_patterns,
        unreachable_code, missing_docs)]

#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]

#[cfg(not(feature = "std"))]
extern crate alloc;

extern crate rlp;
extern crate bigint;
extern crate block_core;
extern crate sha3;
extern crate ripemd160;
extern crate sha2;
extern crate digest;

#[macro_use]
extern crate log;

#[cfg(feature = "c-secp256k1")]
extern crate secp256k1;

#[cfg(feature = "rust-secp256k1")]
extern crate secp256k1;

#[cfg(feature = "std")]
extern crate block;

#[cfg(test)]
extern crate hexutil;

mod util;
mod memory;
mod stack;
mod pc;
mod params;
mod eval;
mod commit;
mod patch;
mod transaction;
pub mod errors;

pub use self::memory::{Memory, SeqMemory};
pub use self::stack::Stack;
pub use self::pc::{PC, PCMut, Instruction, Valids};
pub use self::params::*;
pub use self::patch::*;
pub use self::eval::{State, Machine, Runtime, MachineStatus};
pub use self::commit::{AccountCommitment, AccountChange, AccountState, BlockhashState, Storage};
pub use self::transaction::{ValidTransaction, TransactionVM, UntrustedTransaction};
pub use self::errors::{OnChainError, NotSupportedError, RequireError, CommitError, PreExecutionError};
pub use self::util::opcode::Opcode;
pub use block_core::TransactionAction;

#[cfg(not(feature = "std"))]
use alloc::vec::Vec;

#[cfg(feature = "std")] use std::collections::{HashSet as Set, hash_map as map};
#[cfg(not(feature = "std"))] use alloc::{collections::BTreeSet as Set, collections::btree_map as map};
#[cfg(not(feature = "std"))] use alloc::boxed::Box;
#[cfg(feature = "std")] use std::cmp::min;
#[cfg(not(feature = "std"))] use core::cmp::min;
use bigint::{U256, H256, Gas, Address};

#[derive(Debug, Clone, PartialEq)]
/// VM Status
pub enum VMStatus {
    /// A running VM.
    Running,
    /// VM is stopped without errors.
    ExitedOk,
    /// VM is stopped due to an error. The state of the VM is before
    /// the last failing instruction.
    ExitedErr(OnChainError),
    /// VM is stopped because it does not support certain
    /// operations. The client is expected to either drop the
    /// transaction or panic. This rarely happens unless the executor
    /// agrees upon on a really large number of gas limit, so it
    /// usually can be safely ignored.
    ExitedNotSupported(NotSupportedError),
}

/// Represents an EVM. This is usually the main interface for clients
/// to interact with.
pub trait VM {
    /// Commit an account information to this VM. This should only
    /// be used when receiving `RequireError`.
    fn commit_account(&mut self, commitment: AccountCommitment) -> Result<(), CommitError>;
    /// Commit a block hash to this VM. This should only be used when
    /// receiving `RequireError`.
    fn commit_blockhash(&mut self, number: U256, hash: H256) -> Result<(), CommitError>;
    /// Returns the current status of the VM.
    fn status(&self) -> VMStatus;
    /// Read the next instruction to be executed.
    fn peek(&self) -> Option<Instruction>;
    /// Read the next opcode to be executed.
    fn peek_opcode(&self) -> Option<Opcode>;
    /// Run one instruction and return. If it succeeds, VM status can
    /// still be `Running`. If the call stack has more than one items,
    /// this will only executes the last items' one single
    /// instruction.
    fn step(&mut self) -> Result<(), RequireError>;
    /// Run instructions until it reaches a `RequireError` or
    /// exits. If this function succeeds, the VM status can only be
    /// either `ExitedOk` or `ExitedErr`.
    fn fire(&mut self) -> Result<(), RequireError> {
        loop {
            match self.status() {
                VMStatus::Running => self.step()?,
                VMStatus::ExitedOk | VMStatus::ExitedErr(_) |
                VMStatus::ExitedNotSupported(_) => return Ok(()),
            }
        }
    }
    /// Returns the changed or committed accounts information up to
    /// current execution status.
    fn accounts(&self) -> map::Values<Address, AccountChange>;
    /// Returns all fetched or modified addresses.
    fn used_addresses(&self) -> Set<Address>;
    /// Returns the out value, if any.
    fn out(&self) -> &[u8];
    /// Returns the available gas of this VM.
    fn available_gas(&self) -> Gas;
    /// Returns the refunded gas of this VM.
    fn refunded_gas(&self) -> Gas;
    /// Returns logs to be appended to the current block if the user
    /// decided to accept the running status of this VM.
    fn logs(&self) -> &[Log];
    /// Returns all removed account addresses as for current VM execution.
    fn removed(&self) -> &[Address];
    /// Returns the real used gas by the transaction or the VM
    /// context. Only available when the status of the VM is
    /// exited. Otherwise returns zero.
    fn used_gas(&self) -> Gas;
}

/// A sequential VM. It uses sequential memory representation and hash
/// map storage for accounts.
pub type SeqContextVM<P> = ContextVM<SeqMemory<P>, P>;
/// A sequential transaction VM. This is same as `SeqContextVM` except
/// it runs at transaction level.
pub type SeqTransactionVM<P> = TransactionVM<SeqMemory<P>, P>;

/// A VM that executes using a context and block information.
pub struct ContextVM<M, P: Patch> {
    runtime: Runtime,
    machines: Vec<Machine<M, P>>,
    fresh_account_state: AccountState<P::Account>,
}

impl<M: Memory + Default, P: Patch> ContextVM<M, P> {
    /// Create a new VM using the given context, block header and patch.
    pub fn new(context: Context, block: HeaderParams) -> Self {
        let mut machines = Vec::new();
        machines.push(Machine::new(context, 1));
        ContextVM {
            machines,
            runtime: Runtime::new(block),
            fresh_account_state: AccountState::default(),
        }
    }

    /// Create a new VM with the given account state and blockhash state.
    pub fn with_states(context: Context, block: HeaderParams,
                       account_state: AccountState<P::Account>, blockhash_state: BlockhashState) -> Self {
        let mut machines = Vec::new();
        machines.push(Machine::with_states(context, 1, account_state.clone()));
        ContextVM {
            machines,
            runtime: Runtime::with_states(block, blockhash_state),
            fresh_account_state: account_state,
        }
    }

    /// Create a new VM with customized initialization code.
    pub fn with_init<F: FnOnce(&mut ContextVM<M, P>)>(
        context: Context, block: HeaderParams,
        account_state: AccountState<P::Account>, blockhash_state: BlockhashState,
        f: F) -> Self {
        let mut vm = Self::with_states(context, block, account_state, blockhash_state);
        f(&mut vm);
        vm.fresh_account_state = vm.machines[0].state().account_state.clone();
        vm
    }

    /// Create a new VM with the result of the previous VM. This is
    /// usually used by transaction for chainning them.
    pub fn with_previous(context: Context, block: HeaderParams, vm: &ContextVM<M, P>) -> Self {
        Self::with_states(context, block,
                          vm.machines[0].state().account_state.clone(),
                          vm.runtime.blockhash_state.clone())
    }

    /// Returns the current state of the VM.
    pub fn current_state(&self) -> &State<M, P> {
        self.current_machine().state()
    }

    /// Returns the current runtime machine.
    pub fn current_machine(&self) -> &Machine<M, P> {
        self.machines.last().unwrap()
    }

    /// Add a new context history hook.
    pub fn add_context_history_hook<F: 'static + Fn(&Context)>(&mut self, f: F) {
        self.runtime.context_history_hooks.push(Box::new(f));
        debug!("registered a new history hook");
    }
}

impl<M: Memory + Default, P: Patch> VM for ContextVM<M, P> {
    fn commit_account(&mut self, commitment: AccountCommitment) -> Result<(), CommitError> {
        for machine in &mut self.machines {
            machine.commit_account(commitment.clone())?;
        }
        debug!("committed account info: {:?}", commitment);
        Ok(())
    }

    fn commit_blockhash(&mut self, number: U256, hash: H256) -> Result<(), CommitError> {
        self.runtime.blockhash_state.commit(number, hash)?;
        debug!("committed blockhash number {}: {}", number, hash);
        Ok(())
    }

    #[cfg_attr(feature = "cargo-clippy", allow(single_match))]
    fn status(&self) -> VMStatus {
        match self.machines.last().unwrap().status().clone() {
            MachineStatus::ExitedNotSupported(err) => return VMStatus::ExitedNotSupported(err),
            _ => (),
        }

        match self.machines[0].status() {
            MachineStatus::Running | MachineStatus::InvokeCreate(_) | MachineStatus::InvokeCall(_, _) => VMStatus::Running,
            MachineStatus::ExitedOk => VMStatus::ExitedOk,
            MachineStatus::ExitedErr(err) => VMStatus::ExitedErr(err),
            MachineStatus::ExitedNotSupported(err) => VMStatus::ExitedNotSupported(err),
        }
    }

    fn peek(&self) -> Option<Instruction> {
        match self.machines.last().unwrap().status().clone() {
            MachineStatus::Running => {
                self.machines.last().unwrap().peek()
            },
            _ => None,
        }
    }

    fn peek_opcode(&self) -> Option<Opcode> {
        match self.machines.last().unwrap().status().clone() {
            MachineStatus::Running => {
                self.machines.last().unwrap().peek_opcode()
            },
            _ => None,
        }
    }

    fn step(&mut self) -> Result<(), RequireError> {
        match self.machines.last().unwrap().status().clone() {
            MachineStatus::Running => {
                self.machines.last_mut().unwrap().step(&self.runtime)?;
                if self.machines.len() == 1 {
                    match self.machines.last().unwrap().status().clone() {
                        MachineStatus::ExitedOk | MachineStatus::ExitedErr(_) =>
                            self.machines.last_mut().unwrap().finalize_context(&self.fresh_account_state),
                        _ => (),
                    }
                }
                Ok(())
            },
            MachineStatus::ExitedOk | MachineStatus::ExitedErr(_) => {
                if self.machines.is_empty() {
                    panic!()
                } else if self.machines.len() == 1 {
                    Ok(())
                } else {
                    let finished = self.machines.pop().unwrap();
                    self.machines.last_mut().unwrap().apply_sub(finished);
                    Ok(())
                }
            },
            MachineStatus::ExitedNotSupported(_) => {
                Ok(())
            },
            MachineStatus::InvokeCall(context, _) => {
                for hook in &self.runtime.context_history_hooks {
                    hook(&context)
                }

                let mut sub = self.machines.last().unwrap().derive(context);
                sub.invoke_call()?;
                self.machines.push(sub);
                Ok(())
            },
            MachineStatus::InvokeCreate(context) => {
               for hook in &self.runtime.context_history_hooks {
                    hook(&context)
                }

                let mut sub = self.machines.last().unwrap().derive(context);
                sub.invoke_create()?;
                self.machines.push(sub);
                Ok(())
            },
        }
    }

    fn fire(&mut self) -> Result<(), RequireError> {
        loop {
            debug!("machines status:");
            for (n, machine) in self.machines.iter().enumerate() {
               debug!("Machine {}: {:x?}", n, machine.status());
            }
            match self.status() {
                VMStatus::Running => self.step()?,
                VMStatus::ExitedOk | VMStatus::ExitedErr(_) |
                VMStatus::ExitedNotSupported(_) => return Ok(()),
            }
        }
    }

    fn accounts(&self) -> map::Values<Address, AccountChange> {
        self.machines[0].state().account_state.accounts()
    }

    fn used_addresses(&self) -> Set<Address> {
        self.machines[0].state().account_state.used_addresses()
    }

    fn out(&self) -> &[u8] {
        self.machines[0].state().out.as_slice()
    }

    fn available_gas(&self) -> Gas {
        self.machines[0].state().available_gas()
    }

    fn refunded_gas(&self) -> Gas {
        self.machines[0].state().refunded_gas
    }

    fn logs(&self) -> &[Log] {
        self.machines[0].state().logs.as_slice()
    }

    fn removed(&self) -> &[Address] {
        self.machines[0].state().removed.as_slice()
    }

    fn used_gas(&self) -> Gas {
        let total_used = self.machines[0].state().total_used_gas();
        let refund_cap = total_used / Gas::from(2u64);
        let refunded = min(refund_cap, self.machines[0].state().refunded_gas);
        total_used - refunded
    }
}