1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
//! High level construction of sparse matrices by stacking, by block, ...

use indexing::SpIndex;
use sparse::prelude::*;
use std::cmp;
use std::default::Default;

/// Stack the given matrices into a new one, using the most efficient stacking
/// direction (ie vertical stack for CSR matrices, horizontal stack for CSC)
pub fn same_storage_fast_stack<'a, N, I, MatArray>(
    mats: &MatArray,
) -> CsMatI<N, I>
where
    N: 'a + Clone,
    I: 'a + SpIndex,
    MatArray: AsRef<[CsMatViewI<'a, N, I>]>,
{
    let mats = mats.as_ref();
    if mats.is_empty() {
        panic!("Empty stacking list");
    }
    let inner_dim = mats[0].inner_dims();
    if !mats.iter().all(|x| x.inner_dims() == inner_dim) {
        panic!("Dimension mismatch");
    }
    let storage_type = mats[0].storage();
    if !mats.iter().all(|x| x.storage() == storage_type) {
        panic!("Storage mismatch");
    }

    let outer_dim = mats.iter().map(|x| x.outer_dims()).sum::<usize>();
    let nnz = mats.iter().map(|x| x.nnz()).sum::<usize>();

    let mut res = CsMatI::empty(storage_type, inner_dim);
    res.reserve_outer_dim_exact(outer_dim);
    res.reserve_nnz_exact(nnz);
    for mat in mats {
        for vec in mat.outer_iterator() {
            res = res.append_outer_csvec(vec.view());
        }
    }

    res
}

/// Construct a sparse matrix by vertically stacking other matrices
pub fn vstack<'a, N, I, MatArray>(mats: &MatArray) -> CsMatI<N, I>
where
    N: 'a + Clone + Default,
    I: 'a + SpIndex,
    MatArray: AsRef<[CsMatViewI<'a, N, I>]>,
{
    let mats = mats.as_ref();
    if mats.iter().all(|x| x.is_csr()) {
        return same_storage_fast_stack(&mats);
    }

    let mats_csr: Vec<_> = mats.iter().map(|x| x.to_csr()).collect();
    let mats_csr_views: Vec<_> = mats_csr.iter().map(|x| x.view()).collect();
    same_storage_fast_stack(&mats_csr_views)
}

/// Construct a sparse matrix by horizontally stacking other matrices
pub fn hstack<'a, N, MatArray, I>(mats: &MatArray) -> CsMatI<N, I>
where
    N: 'a + Clone + Default,
    I: 'a + SpIndex,
    MatArray: AsRef<[CsMatViewI<'a, N, I>]>,
{
    let mats = mats.as_ref();
    if mats.iter().all(|x| x.is_csc()) {
        return same_storage_fast_stack(&mats);
    }

    let mats_csc: Vec<_> = mats.iter().map(|x| x.to_csc()).collect();
    let mats_csc_views: Vec<_> = mats_csc.iter().map(|x| x.view()).collect();
    same_storage_fast_stack(&mats_csc_views)
}

/// Specify a sparse matrix by constructing it from blocks of other matrices
///
/// # Examples
/// ```
/// use sprs::CsMat;
/// let a = CsMat::<f64>::eye(3);
/// let b = CsMat::<f64>::eye(4);
/// let c = sprs::bmat(&[[Some(a.view()), None],
///                      [None, Some(b.view())]]);
/// assert_eq!(c.rows(), 7);
/// ```
pub fn bmat<'a, N, I, OuterArray, InnerArray>(mats: &OuterArray) -> CsMatI<N, I>
where
    N: 'a + Clone + Default,
    I: 'a + SpIndex,
    OuterArray: 'a + AsRef<[InnerArray]>,
    InnerArray: 'a + AsRef<[Option<CsMatViewI<'a, N, I>>]>,
{
    let mats = mats.as_ref();
    let super_rows = mats.len();
    if super_rows == 0 {
        panic!("Empty stacking list");
    }
    let super_cols = mats[0].as_ref().len();
    if super_cols == 0 {
        panic!("Empty stacking list");
    }

    // check input has matrix shape
    if !mats.iter().all(|x| x.as_ref().len() == super_cols) {
        panic!("Dimension mismatch");
    }

    if mats.iter().any(|x| x.as_ref().iter().all(|y| y.is_none())) {
        panic!("Empty bmat row");
    }
    if (0..super_cols).any(|j| mats.iter().all(|x| x.as_ref()[j].is_none())) {
        panic!("Empty bmat col");
    }

    // find out the shapes of the None elements
    let rows_per_row: Vec<_> = mats
        .iter()
        .map(|row| {
            row.as_ref().iter().fold(0, |nrows, mopt| {
                mopt.as_ref().map_or(nrows, |m| cmp::max(nrows, m.rows()))
            })
        })
        .collect();
    let cols_per_col: Vec<_> = (0..super_cols)
        .map(|j| {
            mats.iter().fold(0, |ncols, row| {
                row.as_ref()[j]
                    .as_ref()
                    .map_or(ncols, |m| cmp::max(ncols, m.cols()))
            })
        })
        .collect();
    let mut to_vstack = Vec::new();
    to_vstack.reserve(super_rows);
    for (i, row) in mats.iter().enumerate() {
        let with_zeros: Vec<_> = row
            .as_ref()
            .iter()
            .enumerate()
            .map(|(j, m)| {
                let shape = (rows_per_row[i], cols_per_col[j]);
                m.as_ref().map_or(CsMatI::zero(shape), |x| x.to_owned())
            })
            .collect();
        let borrows: Vec<_> = with_zeros.iter().map(|x| x.view()).collect();
        let stacked = hstack(&borrows);
        to_vstack.push(stacked);
    }
    let borrows: Vec<_> = to_vstack.iter().map(|x| x.view()).collect();
    vstack(&borrows)
}

#[cfg(test)]
mod test {
    use sparse::CsMat;
    use test_data::{mat1, mat2, mat3, mat4};

    fn mat1_vstack_mat2() -> CsMat<f64> {
        let indptr = vec![0, 2, 4, 5, 6, 7, 11, 13, 13, 15, 17];
        let indices = vec![2, 3, 3, 4, 2, 1, 3, 0, 1, 2, 4, 0, 3, 2, 3, 1, 2];
        let data = vec![
            3., 4., 2., 5., 5., 8., 7., 6., 7., 3., 3., 8., 9., 2., 4., 4., 4.,
        ];
        CsMat::new((10, 5), indptr, indices, data)
    }

    #[test]
    #[should_panic]
    fn same_storage_fast_stack_fail_empty_stacking_list() {
        let _: CsMat<f64> = super::same_storage_fast_stack(&[]);
    }

    #[test]
    #[should_panic]
    fn same_storage_fast_stack_fail_dim_mismatch() {
        let a = mat1();
        let c = mat3();
        let _ = super::same_storage_fast_stack(&[a.view(), c.view()]);
    }

    #[test]
    #[should_panic]
    fn same_storage_fast_stack_fail_storage() {
        let a = mat1();
        let d = mat4();
        let _ = super::same_storage_fast_stack(&[a.view(), d.view()]);
    }

    #[test]
    fn same_storage_fast_stack_ok() {
        let a = mat1();
        let b = mat2();
        let res = super::same_storage_fast_stack(&[a.view(), b.view()]);
        let expected = mat1_vstack_mat2();
        assert_eq!(res, expected);
    }

    #[test]
    fn vstack_trivial() {
        let a = mat1();
        let b = mat2();
        let res = super::vstack(&[a.view(), b.view()]);
        let expected = mat1_vstack_mat2();
        assert_eq!(res, expected);
    }

    #[test]
    fn hstack_trivial() {
        let a = mat1().transpose_into();
        let b = mat2().transpose_into();
        let res = super::hstack(&[a.view(), b.view()]);
        let expected = mat1_vstack_mat2().transpose_into();
        assert_eq!(res, expected);
    }

    #[test]
    fn vstack_with_conversion() {
        let a = mat1().to_csc();
        let b = mat2();
        let res = super::vstack(&[a.view(), b.view()]);
        let expected = mat1_vstack_mat2();
        assert_eq!(res, expected);
    }

    #[test]
    #[should_panic]
    fn bmat_fail_shapes() {
        let _: CsMat<f64> = super::bmat(&vec![vec![None, None], vec![None]]);
    }

    #[test]
    #[should_panic]
    fn bmat_fail_empty_stacking_list() {
        let _: CsMat<f64> = super::bmat(&[[]]);
    }

    #[test]
    #[should_panic]
    fn bmat_fail_empty_bmat_row() {
        let a = mat1();
        let c = mat3();
        let _: CsMat<f64> =
            super::bmat(&[[None, None], [Some(a.view()), Some(c.view())]]);
    }

    #[test]
    #[should_panic]
    fn bmat_fail_empty_bmat_col() {
        let a = mat1();
        let c = mat3();
        let _: CsMat<f64> =
            super::bmat(&[[Some(c.view()), None], [Some(a.view()), None]]);
    }

    #[test]
    fn bmat_simple() {
        let a = CsMat::<f64>::eye(5);
        let b = CsMat::<f64>::eye(4);
        let c = super::bmat(&[[Some(a.view()), None], [None, Some(b.view())]]);
        let expected = CsMat::new(
            (9, 9),
            vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
            vec![0, 1, 2, 3, 4, 5, 6, 7, 8],
            vec![1.; 9],
        );
        assert_eq!(c, expected);
    }

    #[test]
    fn bmat_complex() {
        let a = mat1();
        let b = mat2();
        let c = super::bmat(&[
            [Some(a.view()), Some(b.view())],
            [Some(b.view()), None],
        ]);
        let expected = CsMat::new(
            (10, 10),
            vec![0, 6, 10, 11, 14, 17, 21, 23, 23, 25, 27],
            vec![
                2, 3, 5, 6, 7, 9, 3, 4, 5, 8, 2, 1, 7, 8, 3, 6, 7, 0, 1, 2, 4,
                0, 3, 2, 3, 1, 2,
            ],
            vec![
                3., 4., 6., 7., 3., 3., 2., 5., 8., 9., 5., 8., 2., 4., 7., 4.,
                4., 6., 7., 3., 3., 8., 9., 2., 4., 4., 4.,
            ],
        );
        assert_eq!(c, expected);

        let d = mat3();
        let e = mat4();
        let f = super::bmat(&[
            [Some(d.view()), Some(a.view())],
            [None, Some(e.view())],
        ]);
        let expected = CsMat::new(
            (10, 9),
            vec![0, 4, 8, 10, 12, 14, 16, 18, 21, 23, 24],
            vec![
                2, 3, 6, 7, 2, 3, 7, 8, 2, 6, 1, 5, 3, 7, 4, 5, 4, 8, 4, 7, 8,
                5, 7, 4,
            ],
            vec![
                3., 4., 3., 4., 2., 5., 2., 5., 5., 5., 8., 8., 7., 7., 6., 8.,
                7., 4., 3., 2., 4., 9., 4., 3.,
            ],
        );
        assert_eq!(f, expected);
    }
}