1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//! The [`Interpolate`] trait and associated symbols.
//!
//! The [`Interpolate`] trait is the central concept of the crate. It enables a spline to be
//! sampled at by interpolating in between control points.
//!
//! In order for a type to be used in [`Spline<K, V>`], some properties must be met about the `K`
//! type must implementing several traits:
//!
//!   - [`One`], giving a neutral element for the multiplication monoid.
//!   - [`Additive`], making the type additive (i.e. one can add or subtract with it).
//!   - [`Linear`], unlocking linear combinations, required for interpolating.
//!   - [`Trigo`], a trait giving *π* and *cosine*, required for e.g. cosine interpolation.
//!
//! Feel free to have a look at current implementors for further help.
//!
//! > *Why doesn’t this crate use [num-traits] instead of
//! > defining its own traits?*
//!
//! The reason for this is quite simple: this crate provides a `no_std` support, which is not
//! currently available easily with [num-traits]. Also, if something changes in [num-traits] with
//! those traits, it would make this whole crate unstable.
//!
//! [`Interpolate`]: crate::interpolate::Interpolate
//! [`Spline<K, V>`]: crate::spline::Spline
//! [`One`]: crate::interpolate::One
//! [`Additive`]: crate::interpolate::Additive
//! [`Linear`]: crate::interpolate::Linear
//! [`Trigo`]: crate::interpolate::Trigo
//! [num-traits]: https://crates.io/crates/num-traits

#[cfg(not(feature = "std"))]
use core::f32;
#[cfg(not(feature = "std"))]
use core::f64;
#[cfg(not(feature = "std"))]
use core::intrinsics::cosf32;
#[cfg(not(feature = "std"))]
use core::intrinsics::cosf64;
#[cfg(not(feature = "std"))]
use core::ops::{Add, Mul, Sub};
#[cfg(feature = "std")]
use std::f32;
#[cfg(feature = "std")]
use std::f64;

/// Types that can be used as interpolator in splines.
///
/// An interpolator value is like the fabric on which control keys (and sampled values) live on.
pub trait Interpolator: Sized + Copy + PartialOrd {
  /// Normalize the interpolator.
  fn normalize(self, start: Self, end: Self) -> Self;
}

macro_rules! impl_Interpolator {
  ($t:ty) => {
    impl Interpolator for $t {
      fn normalize(self, start: Self, end: Self) -> Self {
        (self - start) / (end - start)
      }
    }
  };
}

impl_Interpolator!(f32);
impl_Interpolator!(f64);

/// Values that can be interpolated. Implementing this trait is required to perform sampling on splines.
///
/// `T` is the interpolator used to sample with. Typical implementations use [`f32`] or [`f64`], but
/// you’re free to use the ones you like.
pub trait Interpolate<T>: Sized + Copy {
  /// Step interpolation.
  fn step(t: T, threshold: T, a: Self, b: Self) -> Self;

  /// Linear interpolation.
  fn lerp(t: T, a: Self, b: Self) -> Self;

  /// Cosine interpolation.
  fn cosine(t: T, a: Self, b: Self) -> Self;

  /// Cubic hermite interpolation.
  fn cubic_hermite(t: T, x: (T, Self), a: (T, Self), b: (T, Self), y: (T, Self)) -> Self;

  /// Quadratic Bézier interpolation.
  ///
  /// `a` is the first point; `b` is the second point and `u` is the tangent of `a` to the curve.
  fn quadratic_bezier(t: T, a: Self, u: Self, b: Self) -> Self;

  /// Cubic Bézier interpolation.
  ///
  /// `a` is the first point; `b` is the second point; `u` is the output tangent of `a` to the curve and `v` is the
  /// input tangent of `b` to the curve.
  fn cubic_bezier(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;

  /// Cubic Bézier interpolation – special case for non-explicit second tangent.
  ///
  /// This version does the same computation as [`Interpolate::cubic_bezier`] but computes the second tangent by
  /// inversing it (typical when the next point uses a Bézier interpolation, where input and output tangents are
  /// mirrored for the same key).
  fn cubic_bezier_mirrored(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
}

#[macro_export]
macro_rules! impl_Interpolate {
  ($t:ty, $v:ty, $pi:expr) => {
    impl $crate::interpolate::Interpolate<$t> for $v {
      fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
        if t < threshold {
          a
        } else {
          b
        }
      }

      fn cosine(t: $t, a: Self, b: Self) -> Self {
        let cos_nt = (1. - (t * $pi).cos()) * 0.5;
        <Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
      }

      fn lerp(t: $t, a: Self, b: Self) -> Self {
        a * (1. - t) + b * t
      }

      fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
        // sampler stuff
        let two_t = t * 2.;
        let three_t = t * 3.;
        let t2 = t * t;
        let t3 = t2 * t;
        let two_t3 = t2 * two_t;
        let two_t2 = t * two_t;
        let three_t2 = t * three_t;

        // tangents
        let m0 = (b.1 - x.1) / (b.0 - x.0) * (b.0 - a.0);
        let m1 = (y.1 - a.1) / (y.0 - a.0) * (b.0 - a.0);

        a.1 * (two_t3 - three_t2 + 1.)
          + m0 * (t3 - two_t2 + t)
          + b.1 * (three_t2 - two_t3)
          + m1 * (t3 - t2)
      }

      fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
        let one_t = 1. - t;
        let one_t2 = one_t * one_t;

        u + (a - u) * one_t2 + (b - u) * t * t
      }

      fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
        let one_t = 1. - t;
        let one_t2 = one_t * one_t;
        let one_t3 = one_t2 * one_t;
        let t2 = t * t;

        a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
      }

      fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
        <Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
      }
    }
  };
}

#[macro_export]
macro_rules! impl_InterpolateT {
  ($t:ty, $v:ty, $pi:expr) => {
    impl $crate::interpolate::Interpolate<$t> for $v {
      fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
        if t < threshold {
          a
        } else {
          b
        }
      }

      fn cosine(t: $t, a: Self, b: Self) -> Self {
        let cos_nt = (1. - (t * $pi).cos()) * 0.5;
        <Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
      }

      fn lerp(t: $t, a: Self, b: Self) -> Self {
        let t = Self::from(t);
        a * (1. - t) + b * t
      }

      fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
        // sampler stuff
        let t = Self::from(t);
        let two_t = t * 2.;
        let three_t = t * 3.;
        let t2 = t * t;
        let t3 = t2 * t;
        let two_t3 = t2 * two_t;
        let two_t2 = t * two_t;
        let three_t2 = t * three_t;

        // tangents
        let m0 = (b.1 - x.1) / (Self::from(b.0 - x.0)) * (Self::from(b.0 - a.0));
        let m1 = (y.1 - a.1) / (Self::from(y.0 - a.0)) * (Self::from(b.0 - a.0));

        a.1 * (two_t3 - three_t2 + 1.)
          + m0 * (t3 - two_t2 + t)
          + b.1 * (three_t2 - two_t3)
          + m1 * (t3 - t2)
      }

      fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
        let t = Self::from(t);
        let one_t = 1. - t;
        let one_t2 = one_t * one_t;

        u + (a - u) * one_t2 + (b - u) * t * t
      }

      fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
        let t = Self::from(t);
        let one_t = 1. - t;
        let one_t2 = one_t * one_t;
        let one_t3 = one_t2 * one_t;
        let t2 = t * t;

        a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
      }

      fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
        <Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
      }
    }
  };
}

impl_Interpolate!(f32, f32, std::f32::consts::PI);
impl_Interpolate!(f64, f64, std::f64::consts::PI);
impl_InterpolateT!(f32, f64, std::f32::consts::PI);