1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
//! A map based on a splay tree.
use std;
use std::mem;
use std::borrow::Borrow;
use tree_core;
use iter;

/// A map based on a splay tree.
///
/// A splay tree based map is a self-adjusting data structure.
/// It performs insertion, removal and look-up in `O(log n)` amortized time.
///
/// It is a logic error for a key to be modified in such a way that
/// the key's ordering relative to any other key,
/// as determined by the `Ord` trait, changes while it is in the map.
/// This is normally only possible through `Cell`, `RefCell`, global state, I/O, or unsafe code.
///
/// # Examples
/// ```
/// use splay_tree::SplayMap;
///
/// let mut map = SplayMap::new();
///
/// map.insert("foo", 1);
/// map.insert("bar", 2);
/// map.insert("baz", 3);
///
/// assert_eq!(map.get("foo"), Some(&1));
/// assert_eq!(map.remove("foo"), Some(1));
/// assert_eq!(map.get("foo"), None);
///
/// for (k, v) in &map {
///     println!("{}: {}", k, v);
/// }
/// ```
///
/// `SplayMap` implements an [Entry API](#method.entry) which allows for
/// more complex methods of getting, setting, updating and removing keys and their values:
/// ```
/// extern crate rand;
/// extern crate splay_tree;
///
/// use splay_tree::SplayMap;
///
/// # fn main() {
/// let mut count = SplayMap::new();
/// for _ in 0..1000 {
///     let k = rand::random::<u8>();
///     *count.entry(k).or_insert(0) += 1;
/// }
/// for k in 0..0x100 {
///     println!("{}: {}", k, count.get(&k).unwrap_or(&0));
/// }
/// # }
/// ```
#[derive(Debug, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct SplayMap<K, V> {
    tree: tree_core::Tree<K, V>,
}
impl<K, V> SplayMap<K, V>
where
    K: Ord,
{
    /// Makes a new empty `SplayMap`.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert("foo", 1);
    /// assert_eq!(map.len(), 1);
    /// ```
    pub fn new() -> Self {
        SplayMap {
            tree: tree_core::Tree::new(),
        }
    }

    /// Clears the map, removing all values.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert("foo", 1);
    /// map.clear();
    /// assert!(map.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.tree = tree_core::Tree::new();
    }

    /// Returns true if the map contains a value for the specified key.
    ///
    /// The key may be any borrowed form of the map's key type,
    /// but the ordering on the borrowed form _must_ match the ordering on the key type.
    ///
    /// # Notice
    ///
    /// Because `SplayMap` is a self-adjusting amortized data structure,
    /// this function requires the `mut` qualifier for `self`.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert("foo", 1);
    /// assert!(map.contains_key("foo"));
    /// assert!(!map.contains_key("bar"));
    /// ```
    pub fn contains_key<Q: ?Sized>(&mut self, key: &Q) -> bool
    where
        K: Borrow<Q>,
        Q: Ord,
    {
        self.tree.contains_key(key)
    }

    /// Returns a reference to the value corresponding to the key.
    ///
    /// The key may be any borrowed form of the map's key type,
    /// but the ordering on the borrowed form _must_ match the ordering on the key type.
    ///
    /// # Notice
    ///
    /// Because `SplayMap` is a self-adjusting amortized data structure,
    /// this function requires the `mut` qualifier for `self`.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert("foo", 1);
    /// assert_eq!(map.get("foo"), Some(&1));
    /// assert_eq!(map.get("bar"), None);
    /// ```
    pub fn get<Q: ?Sized>(&mut self, key: &Q) -> Option<&V>
    where
        K: Borrow<Q>,
        Q: Ord,
    {
        self.get_mut(key).map(|v| &*v)
    }

    /// Returns a mutable reference to the value corresponding to the key.
    ///
    /// The key may be any borrowed form of the map's key type,
    /// but the ordering on the borrowed form _must_ match the ordering on the key type.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert("foo", 1);
    /// map.get_mut("foo").map(|v| *v = 2);
    /// assert_eq!(map.get("foo"), Some(&2));
    /// ```
    pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
    where
        K: Borrow<Q>,
        Q: Ord,
    {
        self.tree.get(key)
    }

    /// Finds a minimum key which satisfies "greater than or equal to `key`" condition in the map.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert(1, ());
    /// map.insert(3, ());
    ///
    /// assert_eq!(map.find_lower_bound_key(&0), Some(&1));
    /// assert_eq!(map.find_lower_bound_key(&1), Some(&1));
    /// assert_eq!(map.find_lower_bound_key(&4), None);
    /// ```
    pub fn find_lower_bound_key<Q: ?Sized>(&mut self, key: &Q) -> Option<&K>
    where
        K: Borrow<Q>,
        Q: Ord,
    {
        self.tree.find_lower_bound(key)
    }

    /// Finds a minimum key which satisfies "greater than `key`" condition in the map.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert(1, ());
    /// map.insert(3, ());
    ///
    /// assert_eq!(map.find_upper_bound_key(&0), Some(&1));
    /// assert_eq!(map.find_upper_bound_key(&1), Some(&3));
    /// assert_eq!(map.find_upper_bound_key(&4), None);
    /// ```
    pub fn find_upper_bound_key<Q: ?Sized>(&mut self, key: &Q) -> Option<&K>
    where
        K: Borrow<Q>,
        Q: Ord,
    {
        self.tree.find_upper_bound(key)
    }

    /// Gets the entry which have the minimum key in the map.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert(1, ());
    /// map.insert(3, ());
    ///
    /// assert_eq!(map.smallest(), Some((&1, &())));
    /// ```
    pub fn smallest(&mut self) -> Option<(&K, &V)> {
        self.tree.get_lftmost()
    }

    /// Takes the entry which have the minimum key in the map.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert(1, ());
    /// map.insert(3, ());
    ///
    /// assert_eq!(map.take_smallest(), Some((1, ())));
    /// assert_eq!(map.take_smallest(), Some((3, ())));
    /// assert_eq!(map.take_smallest(), None);
    /// ```
    pub fn take_smallest(&mut self) -> Option<(K, V)> {
        self.tree.take_lftmost()
    }

    /// Gets the entry which have the maximum key in the map.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert(1, ());
    /// map.insert(3, ());
    ///
    /// assert_eq!(map.largest(), Some((&3, &())));
    /// ```
    pub fn largest(&mut self) -> Option<(&K, &V)> {
        self.tree.get_rgtmost()
    }

    /// Takes the entry which have the maximum key in the map.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert(1, ());
    /// map.insert(3, ());
    ///
    /// assert_eq!(map.take_largest(), Some((3, ())));
    /// assert_eq!(map.take_largest(), Some((1, ())));
    /// assert_eq!(map.take_largest(), None);
    /// ```
    pub fn take_largest(&mut self) -> Option<(K, V)> {
        self.tree.take_rgtmost()
    }

    /// Inserts a key-value pair into the map.
    ///
    /// If the map did not have this key present, `None` is  returned.
    ///
    /// If the map did have this key present, the value is updated,
    /// and the old value is returned.
    /// The key is not updated, though;
    /// this matters for types that can be `==` without being identical.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// assert_eq!(map.insert("foo", 1), None);
    /// assert_eq!(map.get("foo"), Some(&1));
    /// assert_eq!(map.insert("foo", 2), Some(1));
    /// assert_eq!(map.get("foo"), Some(&2));
    /// ```
    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
        self.tree.insert(key, value)
    }

    /// Removes a key from the map,
    /// returning the value at the key if the key was previously in the map.
    ///
    /// The key may be any borrowed form of the map's key type,
    /// but the ordering on the borrowed form _must_ match the ordering on the key type.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert("foo", 1);
    /// assert_eq!(map.remove("foo"), Some(1));
    /// assert_eq!(map.remove("foo"), None);
    /// ```
    pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
    where
        K: Borrow<Q>,
        Q: Ord,
    {
        self.tree.remove(key)
    }

    /// Gets the given key's corresponding entry in the map for in-place manipulation.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut count = SplayMap::new();
    ///
    /// // count the number of occurrences of letters in the vec
    /// for x in vec!["a", "b", "a", "c", "a", "b"] {
    ///     *count.entry(x).or_insert(0) += 1;
    /// }
    ///
    /// assert_eq!(count.get("a"), Some(&3));
    /// ```
    pub fn entry(&mut self, key: K) -> Entry<K, V> {
        if self.contains_key(&key) {
            Entry::Occupied(OccupiedEntry {
                tree: &mut self.tree,
            })
        } else {
            Entry::Vacant(VacantEntry {
                key: key,
                tree: &mut self.tree,
            })
        }
    }
}
impl<K, V> SplayMap<K, V> {
    /// Returns the number of elements in the map.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// map.insert("foo", 1);
    /// map.insert("bar", 2);
    /// assert_eq!(map.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        self.tree.len()
    }

    /// Returns true if the map contains no elements.
    ///
    /// #  Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map = SplayMap::new();
    /// assert!(map.is_empty());
    ///
    /// map.insert("foo", 1);
    /// assert!(!map.is_empty());
    ///
    /// map.clear();
    /// assert!(map.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Gets an iterator over the entries of the map, sorted by key.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let map: SplayMap<_, _> =
    ///     vec![("foo", 1), ("bar", 2), ("baz", 3)].into_iter().collect();
    /// assert_eq!(vec![(&"bar", &2), (&"baz", &3), (&"foo", &1)],
    ///            map.iter().collect::<Vec<_>>());
    /// ```
    pub fn iter(&self) -> Iter<K, V> {
        Iter::new(&self.tree)
    }

    /// Gets a mutable iterator over the entries of the map, soretd by key.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map: SplayMap<_, _> =
    ///     vec![("foo", 1), ("bar", 2), ("baz", 3)].into_iter().collect();
    /// for (_, v) in map.iter_mut() {
    ///    *v += 10;
    /// }
    /// assert_eq!(map.get("bar"), Some(&12));
    /// ```
    pub fn iter_mut(&mut self) -> IterMut<K, V> {
        IterMut::new(&mut self.tree)
    }

    /// Gets an iterator over the keys of the map, in sorted order.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let map: SplayMap<_, _> =
    ///     vec![("foo", 1), ("bar", 2), ("baz", 3)].into_iter().collect();
    /// assert_eq!(vec!["bar", "baz", "foo"],
    ///            map.keys().cloned().collect::<Vec<_>>());
    /// ```
    pub fn keys(&self) -> Keys<K, V> {
        Keys::new(&self.tree)
    }

    /// Gets an iterator over the values of the map, in order by key.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let map: SplayMap<_, _> =
    ///     vec![("foo", 1), ("bar", 2), ("baz", 3)].into_iter().collect();
    /// assert_eq!(vec![2, 3, 1],
    ///            map.values().cloned().collect::<Vec<_>>());
    /// ```
    pub fn values(&self) -> Values<K, V> {
        Values::new(&self.tree)
    }

    /// Gets a mutable iterator over the values of the map, in order by key.
    ///
    /// # Examples
    /// ```
    /// use splay_tree::SplayMap;
    ///
    /// let mut map: SplayMap<_, _> =
    ///     vec![("foo", 1), ("bar", 2), ("baz", 3)].into_iter().collect();
    /// for v in map.values_mut() {
    ///     *v += 10;
    /// }
    /// assert_eq!(vec![12, 13, 11],
    ///            map.values().cloned().collect::<Vec<_>>());
    /// ```
    pub fn values_mut(&mut self) -> ValuesMut<K, V> {
        ValuesMut::new(&mut self.tree)
    }
}
impl<K, V> Default for SplayMap<K, V>
where
    K: Ord,
{
    fn default() -> Self {
        SplayMap::new()
    }
}
impl<K, V> std::iter::FromIterator<(K, V)> for SplayMap<K, V>
where
    K: Ord,
{
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = (K, V)>,
    {
        let mut map = SplayMap::new();
        for (k, v) in iter {
            map.insert(k, v);
        }
        map
    }
}
impl<'a, K, V> IntoIterator for &'a SplayMap<K, V>
where
    K: 'a,
    V: 'a,
{
    type Item = (&'a K, &'a V);
    type IntoIter = Iter<'a, K, V>;
    fn into_iter(self) -> Self::IntoIter {
        Iter::new(&self.tree)
    }
}
impl<'a, K, V> IntoIterator for &'a mut SplayMap<K, V>
where
    K: 'a,
    V: 'a,
{
    type Item = (&'a K, &'a mut V);
    type IntoIter = IterMut<'a, K, V>;
    fn into_iter(self) -> Self::IntoIter {
        IterMut::new(&mut self.tree)
    }
}
impl<K, V> IntoIterator for SplayMap<K, V> {
    type Item = (K, V);
    type IntoIter = IntoIter<K, V>;
    fn into_iter(self) -> Self::IntoIter {
        IntoIter::new(self.tree)
    }
}
impl<K, V> Extend<(K, V)> for SplayMap<K, V>
where
    K: Ord,
{
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = (K, V)>,
    {
        for (k, v) in iter {
            self.insert(k, v);
        }
    }
}
impl<'a, K, V> Extend<(&'a K, &'a V)> for SplayMap<K, V>
where
    K: 'a + Copy + Ord,
    V: 'a + Copy,
{
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = (&'a K, &'a V)>,
    {
        for (k, v) in iter {
            self.insert(*k, *v);
        }
    }
}

/// An iterator over a SplayMap's entries.
pub struct Iter<'a, K: 'a, V: 'a>(iter::Iter<'a, K, V>);
impl<'a, K: 'a, V: 'a> Iter<'a, K, V> {
    fn new(tree: &'a tree_core::Tree<K, V>) -> Self {
        Iter(tree.iter())
    }
}
impl<'a, K: 'a, V: 'a> Iterator for Iter<'a, K, V> {
    type Item = (&'a K, &'a V);
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

/// A mutable iterator over a SplayMap's entries.
pub struct IterMut<'a, K: 'a, V: 'a>(iter::IterMut<'a, K, V>);
impl<'a, K: 'a, V: 'a> IterMut<'a, K, V> {
    fn new(tree: &'a mut tree_core::Tree<K, V>) -> Self {
        IterMut(tree.iter_mut())
    }
}
impl<'a, K: 'a, V: 'a> Iterator for IterMut<'a, K, V> {
    type Item = (&'a K, &'a mut V);
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

/// An owning iterator over a SplayMap's entries.
pub struct IntoIter<K, V>(iter::IntoIter<K, V>);
impl<K, V> IntoIter<K, V> {
    fn new(tree: tree_core::Tree<K, V>) -> Self {
        IntoIter(tree.into_iter())
    }
}
impl<K, V> Iterator for IntoIter<K, V> {
    type Item = (K, V);
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

/// An iterator over a SplayMap's keys.
pub struct Keys<'a, K: 'a, V: 'a>(Iter<'a, K, V>);
impl<'a, K: 'a, V: 'a> Keys<'a, K, V> {
    fn new(tree: &'a tree_core::Tree<K, V>) -> Self {
        Keys(Iter::new(tree))
    }
}
impl<'a, K: 'a, V: 'a> Iterator for Keys<'a, K, V> {
    type Item = &'a K;
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(k, _)| k)
    }
}

/// An iterator over a SplayMap's values.
pub struct Values<'a, K: 'a, V: 'a>(Iter<'a, K, V>);
impl<'a, K: 'a, V: 'a> Values<'a, K, V> {
    fn new(tree: &'a tree_core::Tree<K, V>) -> Self {
        Values(Iter::new(tree))
    }
}
impl<'a, K: 'a, V: 'a> Iterator for Values<'a, K, V> {
    type Item = &'a V;
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(_, v)| v)
    }
}

/// A mutable iterator over a SplayMap's values.
pub struct ValuesMut<'a, K: 'a, V: 'a>(IterMut<'a, K, V>);
impl<'a, K: 'a, V: 'a> ValuesMut<'a, K, V> {
    fn new(tree: &'a mut tree_core::Tree<K, V>) -> Self {
        ValuesMut(IterMut::new(tree))
    }
}
impl<'a, K: 'a, V: 'a> Iterator for ValuesMut<'a, K, V> {
    type Item = &'a mut V;
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(_, v)| v)
    }
}

/// A view into a single entry in a map, which may either be vacant or occupied.
pub enum Entry<'a, K: 'a, V: 'a> {
    /// An occupied entry
    Occupied(OccupiedEntry<'a, K, V>),
    /// A vacant entry
    Vacant(VacantEntry<'a, K, V>),
}
impl<'a, K: 'a, V: 'a> Entry<'a, K, V>
where
    K: Ord,
{
    /// Returns a reference to this entry's key.
    pub fn key(&self) -> &K {
        match *self {
            Entry::Occupied(ref e) => e.key(),
            Entry::Vacant(ref e) => e.key(),
        }
    }

    /// Ensures a value is in the entry by inserting the default if empty,
    /// and returns a mutable reference to the value in the entry.
    pub fn or_insert(self, default: V) -> &'a mut V {
        match self {
            Entry::Occupied(e) => e.into_mut(),
            Entry::Vacant(e) => e.insert(default),
        }
    }

    /// Ensures a value is in the entry by inserting the result of the default function if empty,
    /// and returns a mutable reference to the value in the entry.
    pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
        match self {
            Entry::Occupied(e) => e.into_mut(),
            Entry::Vacant(e) => e.insert(default()),
        }
    }
}

/// An occupied Entry.
pub struct OccupiedEntry<'a, K: 'a, V: 'a> {
    tree: &'a mut tree_core::Tree<K, V>,
}
impl<'a, K: 'a, V: 'a> OccupiedEntry<'a, K, V>
where
    K: Ord,
{
    /// Gets a reference to the key in the entry.
    pub fn key(&self) -> &K {
        &self.tree.root_ref().key
    }

    /// Gets a reference to the value in the entry.
    pub fn get(&self) -> &V {
        &self.tree.root_ref().val
    }

    /// Gets a mutable reference to the value in the entry.
    pub fn get_mut(&mut self) -> &mut V {
        &mut self.tree.root_mut().val
    }

    /// Converts the entry into a mutable reference to its value.
    pub fn into_mut(self) -> &'a mut V {
        &mut self.tree.root_mut().val
    }

    /// Sets the value of the entry with the OccupiedEntry's key,
    /// and returns the entry's old value.
    pub fn insert(&mut self, value: V) -> V {
        mem::replace(self.get_mut(), value)
    }

    /// Takes the value of the entry out of the map, and returns it.
    pub fn remove(self) -> V {
        self.tree.pop_root().unwrap().1
    }
}

/// A vacant Entry.
pub struct VacantEntry<'a, K: 'a, V: 'a> {
    key: K,
    tree: &'a mut tree_core::Tree<K, V>,
}
impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V>
where
    K: Ord,
{
    /// Gets a reference to the key that would be used
    /// when inserting a value through the VacantEntry.
    pub fn key(&self) -> &K {
        &self.key
    }

    /// Sets the value of the entry with the VacantEntry's key,
    /// and returns a mutable reference to it.
    pub fn insert(self, value: V) -> &'a mut V {
        self.tree.insert(self.key, value);
        &mut self.tree.root_mut().val
    }
}