1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
//! Helper types for cartesian coordinate system topology

use num_traits::{CheckedAdd, CheckedSub, One};
use std::ops::{Add, Sub};

/// Direction on a number line/coordinate axis or identifiers for the end points of a line
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Direction {
    Negative = 0,
    Positive = 1,
}

/// Abbreviated type alias for cartesian coordinate axes in 3D
pub type Axis = CartesianAxis3d;

/// The cartesian coordinate axes in 3D
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum CartesianAxis3d {
    /// The x-axis
    X = 0,
    /// The y-axis
    Y = 1,
    /// The z-axis
    Z = 2,
}

/// Identifies a direction along a specific cartesian axis
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub struct DirectedAxis {
    pub axis: Axis,
    pub direction: Direction,
}

/// Collection that stores one value per unique [`DirectedAxis`], can be used e.g. to store neighbors in a cartesian grid
#[derive(Copy, Clone, PartialEq, Eq, Default, Debug)]
pub struct DirectedAxisArray<T> {
    data: [T; 6],
}

impl Direction {
    /// Returns a reference to an array containing all possible directions
    /// ```
    /// use crate::splashsurf_lib::topology::Direction;
    /// assert!(Direction::all_possible().iter().any(|d| d.is_positive()));
    /// assert!(Direction::all_possible().iter().any(|d| d.is_negative()));
    /// assert_eq!(Direction::all_possible().iter().count(), 2);
    /// ```
    pub const fn all_possible() -> &'static [Direction; 2] {
        &ALL_DIRECTIONS
    }

    /// Constructs a new positive or negative direction depending on the flag
    #[inline(always)]
    /// ```
    /// use crate::splashsurf_lib::topology::Direction;
    /// assert_eq!(Direction::new_positive(true), Direction::Positive);
    /// assert_eq!(Direction::new_positive(false), Direction::Negative);
    /// ```
    pub const fn new_positive(is_positive: bool) -> Self {
        if is_positive {
            Direction::Positive
        } else {
            Direction::Negative
        }
    }

    /// Returns the opposite direction
    pub const fn opposite(&self) -> Self {
        match self {
            Direction::Positive => Direction::Negative,
            Direction::Negative => Direction::Positive,
        }
    }

    /// Adds or subtracts the given step from the value depending on the direction
    /// ```
    /// use crate::splashsurf_lib::topology::Direction;
    /// assert_eq!(Direction::Positive.apply_step(27, 3), 30);
    /// assert_eq!(Direction::Negative.apply_step(27, 3), 24);
    /// ```
    #[inline(always)]
    pub fn apply_step<N: Add<Output = N> + Sub<Output = N>>(&self, n: N, step: N) -> N {
        if self.is_positive() {
            n + step
        } else {
            n - step
        }
    }

    /// Same as `apply_step` but uses `checked_add` and `checked_sub`, i.e. returns `None` on overflow
    /// ```
    /// use crate::splashsurf_lib::topology::Direction;
    /// assert_eq!(Direction::Negative.checked_apply_step(0 as i32, 10), Some(-10));
    /// assert_eq!(Direction::Negative.checked_apply_step(0 as u32, 10), None);
    /// ```
    #[inline(always)]
    pub fn checked_apply_step<N: CheckedAdd<Output = N> + CheckedSub<Output = N>>(
        &self,
        n: N,
        step: N,
    ) -> Option<N> {
        if self.is_positive() {
            n.checked_add(&step)
        } else {
            n.checked_sub(&step)
        }
    }

    /// Adds or subtracts a 3D step from the array depending on the direction, returns `None` on overflow
    /// ```
    /// use crate::splashsurf_lib::topology::Direction;
    /// assert_eq!(Direction::Negative.checked_apply_step_ijk(&[1, 2, 3], &[0, 1, 2]), Some([1, 1, 1]));
    /// ```
    #[inline(always)]
    pub fn checked_apply_step_ijk<N: CheckedAdd<Output = N> + CheckedSub<Output = N>>(
        &self,
        start: &[N; 3],
        step: &[N; 3],
    ) -> Option<[N; 3]> {
        Some(if self.is_positive() {
            [
                start[0].checked_add(&step[0])?,
                start[1].checked_add(&step[1])?,
                start[2].checked_add(&step[2])?,
            ]
        } else {
            [
                start[0].checked_sub(&step[0])?,
                start[1].checked_sub(&step[1])?,
                start[2].checked_sub(&step[2])?,
            ]
        })
    }

    /// Returns whether the direction is positive
    /// ```
    /// use crate::splashsurf_lib::topology::Direction;
    /// assert_eq!(Direction::Positive.is_positive(), true);
    /// assert_eq!(Direction::Negative.is_positive(), false);
    /// ```
    #[inline(always)]
    pub const fn is_positive(&self) -> bool {
        match self {
            Direction::Positive => true,
            Direction::Negative => false,
        }
    }

    /// Returns whether the direction is negative
    /// ```
    /// use crate::splashsurf_lib::topology::Direction;
    /// assert_eq!(Direction::Positive.is_negative(), false);
    /// assert_eq!(Direction::Negative.is_negative(), true);
    /// ```
    #[inline(always)]
    pub const fn is_negative(&self) -> bool {
        !self.is_positive()
    }
}

const ALL_DIRECTIONS: [Direction; 2] = [Direction::Negative, Direction::Positive];

impl CartesianAxis3d {
    /// Returns a reference to an array containing all 3D cartesian axes
    /// ```
    /// use crate::splashsurf_lib::topology::Axis;
    /// assert_eq!(Axis::all_possible()[0], Axis::X);
    /// assert_eq!(Axis::all_possible()[2], Axis::Z);
    /// assert_eq!(Axis::all_possible().len(), 3);
    /// ```
    #[inline(always)]
    pub const fn all_possible() -> &'static [Axis; 3] {
        &ALL_AXES
    }

    /// Converts the cartesian axis into the corresponding 3D dimension index (X=0, Y=1, Z=2)
    /// ```
    /// use crate::splashsurf_lib::topology::Axis;
    /// assert_eq!(Axis::X.dim(), 0);
    /// assert_eq!(Axis::Y.dim(), 1);
    /// assert_eq!(Axis::Z.dim(), 2);
    /// ```
    #[inline(always)]
    pub const fn dim(self) -> usize {
        self as usize
    }

    /// Returns the other two axes that are orthogonal to the current axis
    /// ```
    /// use crate::splashsurf_lib::topology::Axis;
    /// assert_eq!(Axis::X.orthogonal_axes(), [Axis::Y, Axis::Z]);
    /// ```
    #[inline(always)]
    pub const fn orthogonal_axes(&self) -> [Self; 2] {
        ORTHOGONAL_AXES[self.dim()]
    }

    /// Combines this coordinate axis with a direction into a DirectedAxis
    /// ```
    /// use crate::splashsurf_lib::topology::{Axis, DirectedAxis, Direction};
    /// assert_eq!(Axis::X.with_direction(Direction::Positive), DirectedAxis::new(Axis::X, Direction::Positive));
    /// ```
    #[inline(always)]
    pub const fn with_direction(self, direction: Direction) -> DirectedAxis {
        DirectedAxis::new(self, direction)
    }
}

const ALL_AXES: [Axis; 3] = [Axis::X, Axis::Y, Axis::Z];

const AXES_ORTHOGONAL_TO_X: [Axis; 2] = [Axis::Y, Axis::Z];
const AXES_ORTHOGONAL_TO_Y: [Axis; 2] = [Axis::Z, Axis::X];
const AXES_ORTHOGONAL_TO_Z: [Axis; 2] = [Axis::X, Axis::Y];
const ORTHOGONAL_AXES: [[Axis; 2]; 3] = [
    AXES_ORTHOGONAL_TO_X,
    AXES_ORTHOGONAL_TO_Y,
    AXES_ORTHOGONAL_TO_Z,
];

#[test]
fn test_orthogonal_axes() {
    assert_eq!(
        CartesianAxis3d::X.orthogonal_axes(),
        [CartesianAxis3d::Y, CartesianAxis3d::Z]
    );
    assert_eq!(
        CartesianAxis3d::Y.orthogonal_axes(),
        [CartesianAxis3d::Z, CartesianAxis3d::X]
    );
    assert_eq!(
        CartesianAxis3d::Z.orthogonal_axes(),
        [CartesianAxis3d::X, CartesianAxis3d::Y]
    );
}

impl DirectedAxis {
    /// Returns a reference to an array of all possible directed axes in 3D
    #[inline(always)]
    pub const fn all_possible() -> &'static [DirectedAxis; 6] {
        &ALL_DIRECTED_AXES
    }

    /// Constructs a new directed axis
    /// ```
    /// use crate::splashsurf_lib::topology::{Axis, DirectedAxis, Direction};
    /// assert_eq!(DirectedAxis::new(Axis::X, Direction::Positive),
    ///            Axis::X.with_direction(Direction::Positive));
    /// ```
    #[inline(always)]
    pub const fn new(axis: Axis, direction: Direction) -> Self {
        Self { axis, direction }
    }

    /// Returns a directed axis with the opposite direction
    /// ```
    /// use crate::splashsurf_lib::topology::{Axis, DirectedAxis, Direction};
    /// assert_eq!(DirectedAxis::new(Axis::X, Direction::Positive)
    ///                 .opposite(), DirectedAxis::new(Axis::X, Direction::Negative));
    /// assert_eq!(DirectedAxis::new(Axis::Z, Direction::Negative)
    ///                 .opposite(), DirectedAxis::new(Axis::Z, Direction::Positive));
    /// ```
    #[inline(always)]
    pub const fn opposite(&self) -> Self {
        Self::new(self.axis, self.direction.opposite())
    }

    /// Converts the directed axis into a unique index in the range `(0..=5)`
    #[inline(always)]
    pub const fn to_usize(&self) -> usize {
        self.axis as usize + (self.direction as usize * 3)
    }

    /// Converts an index in the range `(0..=5)` to the corresponding directed axis, panics if the index is out of range
    #[inline(always)]
    pub const fn from_usize(n: usize) -> Self {
        Self::all_possible()[n]
    }

    /// Applies an increment of `1` in the direction of this directed axis to the given index array, returns `None` on overflow
    /// ```
    /// use crate::splashsurf_lib::topology::{Axis, DirectedAxis, Direction};
    /// assert_eq!(DirectedAxis::new(Axis::X, Direction::Positive)
    ///                 .apply_single_step(&[1,2,3]), Some([2,2,3]));
    /// ```
    #[inline(always)]
    pub fn apply_single_step<N: Clone + CheckedAdd<Output = N> + CheckedSub<Output = N> + One>(
        &self,
        index: &[N; 3],
    ) -> Option<[N; 3]> {
        self.checked_apply_step(index, N::one())
    }

    /// Applies the given step in the direction of this directed axis to the given index array, returns `None` on overflow
    /// ```
    /// use crate::splashsurf_lib::topology::{Axis, DirectedAxis, Direction};
    /// assert_eq!(DirectedAxis::new(Axis::X, Direction::Positive)
    ///                 .checked_apply_step(&[1,2,3], 6), Some([7,2,3]));
    /// assert_eq!(DirectedAxis::new(Axis::Z, Direction::Negative)
    ///                 .checked_apply_step(&[1,2,3], 10), Some([1,2,-7]));
    /// ```
    #[inline(always)]
    pub fn checked_apply_step<N: Clone + CheckedAdd<Output = N> + CheckedSub<Output = N>>(
        &self,
        index: &[N; 3],
        step: N,
    ) -> Option<[N; 3]> {
        let mut index = index.clone();
        index[self.axis.dim()] = self
            .direction
            .checked_apply_step(index[self.axis.dim()].clone(), step)?;
        Some(index)
    }

    /// Applies the corresponding component of the step in the direction of this directed axis to the given index array, returns `None` on overflow
    /// ```
    /// use crate::splashsurf_lib::topology::{Axis, DirectedAxis, Direction};
    /// assert_eq!(DirectedAxis::new(Axis::X, Direction::Positive)
    ///                 .checked_apply_step_ijk(&[1,2,3], &[6,8,10]), Some([7,2,3]));
    /// assert_eq!(DirectedAxis::new(Axis::Z, Direction::Negative)
    ///                 .checked_apply_step_ijk(&[1,2,3], &[6,8,10]), Some([1,2,-7]));
    /// ```
    #[inline(always)]
    pub fn checked_apply_step_ijk<N: Clone + CheckedAdd<Output = N> + CheckedSub<Output = N>>(
        &self,
        index: &[N; 3],
        step: &[N; 3],
    ) -> Option<[N; 3]> {
        let mut index = index.clone();
        index[self.axis.dim()] = self.direction.checked_apply_step(
            index[self.axis.dim()].clone(),
            step[self.axis.dim()].clone(),
        )?;
        Some(index)
    }
}

const ALL_DIRECTED_AXES: [DirectedAxis; 6] = [
    DirectedAxis::new(Axis::X, Direction::Negative),
    DirectedAxis::new(Axis::Y, Direction::Negative),
    DirectedAxis::new(Axis::Z, Direction::Negative),
    DirectedAxis::new(Axis::X, Direction::Positive),
    DirectedAxis::new(Axis::Y, Direction::Positive),
    DirectedAxis::new(Axis::Z, Direction::Positive),
];

#[test]
fn test_directed_axis_usize_conversion() {
    for i in 0..6 {
        assert_eq!(DirectedAxis::from_usize(i).to_usize(), i);
    }
}

#[test]
fn test_directed_axis_all_possible_consistency() {
    let all_directed_axes = DirectedAxis::all_possible();
    for (i, ax) in all_directed_axes.iter().enumerate() {
        assert_eq!(ax.to_usize(), i);
        assert_eq!(*ax, DirectedAxis::from_usize(i));
    }
}

impl<T> DirectedAxisArray<T> {
    /// Constructs a new array and fills it with values produced by the given closure
    pub fn new_with<F: FnMut(&DirectedAxis) -> T>(f: F) -> Self {
        let mut f = f;
        Self {
            data: [
                f(&DirectedAxis::all_possible()[0]),
                f(&DirectedAxis::all_possible()[1]),
                f(&DirectedAxis::all_possible()[2]),
                f(&DirectedAxis::all_possible()[3]),
                f(&DirectedAxis::all_possible()[4]),
                f(&DirectedAxis::all_possible()[5]),
            ],
        }
    }

    /// Returns a reference to the value stored for the given axis
    pub fn get(&self, axis: &DirectedAxis) -> &T {
        &self.data[axis.to_usize()]
    }

    /// Returns a mutable reference to the value stored for the given axis
    pub fn get_mut(&mut self, axis: &DirectedAxis) -> &mut T {
        &mut self.data[axis.to_usize()]
    }

    /// Returns an iterator of all unique directed axes and references to the corresponding stored value
    pub fn iter(&self) -> impl Iterator<Item = (&DirectedAxis, &T)> {
        DirectedAxis::all_possible().iter().zip(self.data.iter())
    }

    /// Returns an iterator of all unique directed axes and mutable references to the corresponding stored value
    pub fn iter_mut(&mut self) -> impl Iterator<Item = (&DirectedAxis, &mut T)> {
        DirectedAxis::all_possible()
            .iter()
            .zip(self.data.iter_mut())
    }

    /// Returns an iterator over references of all stored values
    pub fn values(&self) -> impl Iterator<Item = &T> {
        self.data.iter()
    }
}