1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use solana_program::keccak::hashv;
use std::cell::RefCell;
use std::collections::VecDeque;
use std::iter::FromIterator;
use std::rc::Rc;

pub type Node = [u8; 32];
pub const EMPTY: Node = [0; 32];

/// Max number of concurrent changes to tree supported before having to regenerate proofs
pub const MAX_SIZE: usize = 64;

/// Max depth of the Merkle tree
pub const MAX_DEPTH: usize = 14;

/// Used for node parity when hashing
pub const MASK: usize = MAX_SIZE - 1;

/// Recomputes root of the Merkle tree from Node & proof
pub fn recompute(mut leaf: Node, proof: &[Node], index: u32) -> Node {
    for (i, s) in proof.iter().enumerate() {
        if index >> i & 1 == 0 {
            let res = hashv(&[&leaf, s.as_ref()]);
            leaf.copy_from_slice(res.as_ref());
        } else {
            let res = hashv(&[s.as_ref(), &leaf]);
            leaf.copy_from_slice(res.as_ref());
        }
    }
    leaf
}

// Off-chain implentation to keep track of nodes
pub struct MerkleTree {
    pub leaf_nodes: Vec<Rc<RefCell<TreeNode>>>,
    pub root: Node,
}

impl MerkleTree {
    /// Calculates updated root from the passed leaves
    pub fn new(leaves: &[Node]) -> Self {
        let mut leaf_nodes = vec![];
        for (i, node) in leaves.iter().enumerate() {
            let mut tree_node = TreeNode::new_empty(0, i as u128);
            tree_node.node = *node;
            leaf_nodes.push(Rc::new(RefCell::new(tree_node)));
        }
        let root = MerkleTree::build_root(leaf_nodes.as_slice());
        Self { leaf_nodes, root }
    }

    /// Builds root from stack of leaves
    pub fn build_root(leaves: &[Rc<RefCell<TreeNode>>]) -> Node {
        let mut tree = VecDeque::from_iter(leaves.iter().map(Rc::clone));
        let mut seq_num = leaves.len() as u128;
        while tree.len() > 1 {
            let left = tree.pop_front().unwrap();
            let level = left.borrow().level;
            let right = if level != tree[0].borrow().level {
                let node = Rc::new(RefCell::new(TreeNode::new_empty(level, seq_num)));
                seq_num += 1;
                node
            } else {
                tree.pop_front().unwrap()
            };
            let mut hashed_parent = EMPTY;

            hashed_parent
                .copy_from_slice(hashv(&[&left.borrow().node, &right.borrow().node]).as_ref());
            let parent = Rc::new(RefCell::new(TreeNode::new(
                hashed_parent,
                left.clone(),
                right.clone(),
                level + 1,
                seq_num,
            )));
            left.borrow_mut().assign_parent(parent.clone());
            right.borrow_mut().assign_parent(parent.clone());
            tree.push_back(parent);
            seq_num += 1;
        }

        let root = tree[0].borrow().node;
        root
    }

    /// Traverses TreeNodes upwards to root from a Leaf TreeNode
    /// hashing along the way
    pub fn get_proof_of_leaf(&self, idx: usize) -> Vec<Node> {
        let mut proof = vec![];
        let mut node = self.leaf_nodes[idx].clone();
        loop {
            let ref_node = node.clone();
            if ref_node.borrow().parent.is_none() {
                break;
            }
            let parent = ref_node.borrow().parent.as_ref().unwrap().clone();
            if parent.borrow().left.as_ref().unwrap().borrow().id == ref_node.borrow().id {
                proof.push(parent.borrow().right.as_ref().unwrap().borrow().node);
            } else {
                proof.push(parent.borrow().left.as_ref().unwrap().borrow().node);
            }
            node = parent;
        }
        proof
    }

    /// Updates root from an updated leaf node set at index: `idx`
    fn update_root_from_leaf(&mut self, leaf_idx: usize) {
        let mut node = self.leaf_nodes[leaf_idx].clone();
        loop {
            let ref_node = node.clone();
            if ref_node.borrow().parent.is_none() {
                self.root = ref_node.borrow().node;
                break;
            }
            let parent = ref_node.borrow().parent.as_ref().unwrap().clone();
            let hash = if parent.borrow().left.as_ref().unwrap().borrow().id == ref_node.borrow().id
            {
                hashv(&[
                    &ref_node.borrow().node,
                    &parent.borrow().right.as_ref().unwrap().borrow().node,
                ])
            } else {
                hashv(&[
                    &parent.borrow().left.as_ref().unwrap().borrow().node,
                    &ref_node.borrow().node,
                ])
            };
            node = parent;
            node.borrow_mut().node.copy_from_slice(hash.as_ref());
        }
    }

    pub fn get_node(&self, idx: usize) -> Node {
        self.leaf_nodes[idx].borrow().node
    }

    pub fn get_root(&self) -> Node {
        self.root
    }

    pub fn add_leaf(&mut self, leaf: Node, leaf_idx: usize) {
        self.leaf_nodes[leaf_idx].borrow_mut().node = leaf;
        self.update_root_from_leaf(leaf_idx)
    }

    pub fn remove_leaf(&mut self, leaf_idx: usize) {
        self.leaf_nodes[leaf_idx].borrow_mut().node = EMPTY;
        self.update_root_from_leaf(leaf_idx)
    }

    pub fn get_leaf(&self, leaf_idx: usize) -> Node {
        self.leaf_nodes[leaf_idx].borrow().node
    }
}

#[derive(Clone)]
pub struct TreeNode {
    pub node: Node,
    left: Option<Rc<RefCell<TreeNode>>>,
    right: Option<Rc<RefCell<TreeNode>>>,
    parent: Option<Rc<RefCell<TreeNode>>>,
    level: u32,
    /// ID needed to figure out whether we came from left or right child node
    /// when hashing path upwards
    id: u128,
}

impl TreeNode {
    pub fn new(
        node: Node,
        left: Rc<RefCell<TreeNode>>,
        right: Rc<RefCell<TreeNode>>,
        level: u32,
        id: u128,
    ) -> Self {
        Self {
            node,
            left: Some(left),
            right: Some(right),
            parent: None,
            level,
            id,
        }
    }

    pub fn new_empty(level: u32, id: u128) -> Self {
        Self {
            node: empty_node(level),
            left: None,
            right: None,
            parent: None,
            level,
            id,
        }
    }

    /// Allows to propagate parent assignment
    pub fn assign_parent(&mut self, parent: Rc<RefCell<TreeNode>>) {
        self.parent = Some(parent);
    }
}

/// Calculates hash of empty nodes up to level i
/// TODO: cache this
pub fn empty_node(level: u32) -> Node {
    let mut data = EMPTY;
    if level != 0 {
        let lower_empty = empty_node(level - 1);
        let hash = hashv(&[&lower_empty, &lower_empty]);
        data.copy_from_slice(hash.as_ref());
    }
    data
}