1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#![crate_type = "lib"]
#![warn(missing_docs)]

#![no_std]

//! This crate provides a thread-safe data container.
//!
//! # Description
//!
//! This structure behaves a lot like a normal Mutex. There are some differences:
//!
//! - It may be used outside the runtime.
//!   - A normal mutex will fail when used without the runtime, this will just lock
//!   - When the runtime is present, it will call the deschedule function when appropriate
//! - No lock poisoning. When a fail occurs when the lock is held, no guarantees are made
//!
//! When calling rust functions from bare threads, such as C `pthread`s, this lock will be very
//! helpfull. In other cases however, you are encouraged to use the locks from the standard
//! library.
//!
//! # Simple example
//!
//! ```
//! use spinlock::Spinlock;
//! let spinlock = Spinlock::new(0);
//!
//! // Modify the data
//! {
//!     let mut data = spinlock.lock();
//!     *data = 2;
//! }
//!
//! // Read the data
//! let answer =
//! {
//!     let data = spinlock.lock();
//!     *data
//! };
//!
//! assert_eq!(answer, 2);
//! ```
//!
//! # Thread-safety example
//!
//! ```
//! use spinlock::Spinlock;
//! use std::sync::{Arc, Barrier};
//!
//! let numthreads = 1000;
//! let spinlock = Arc::new(Spinlock::new(0));
//!
//! // We use a barrier to ensure the readout happens after all writing
//! let barrier = Arc::new(Barrier::new(numthreads + 1));
//!
//! for _ in (0..numthreads)
//! {
//!     let my_barrier = barrier.clone();
//!     let my_lock = spinlock.clone();
//!     std::thread::spawn(move||
//!     {
//!         let mut guard = my_lock.lock();
//!         *guard += 1;
//!
//!         // Release the lock to prevent a deadlock
//!         drop(guard);
//!         my_barrier.wait();
//!     });
//! }
//!
//! barrier.wait();
//!
//! let answer = { *spinlock.lock() };
//! assert_eq!(answer, numthreads);
//! ```

#![feature(const_fn)]

#[cfg(test)]
extern crate std;

use core::sync::atomic::{AtomicBool, Ordering, ATOMIC_BOOL_INIT};
use core::cell::UnsafeCell;
use core::marker::Sync;
use core::ops::{Drop, Deref, DerefMut};

/// A wrapper for the data giving access in a thread-safe manner
pub struct Spinlock<T>
{
    lock: AtomicBool,
    data: UnsafeCell<T>,
}

/// A guard to which the protected data can be accessed
///
/// When the guard falls out of scope it will release the lock.
pub struct SpinlockGuard<'a, T:'a>
{
    lock: &'a AtomicBool,
    data: &'a mut T,
}

unsafe impl<T> Sync for Spinlock<T> {}

/// A Spinlock which may be used statically.
///
/// ```
/// use spinlock::{StaticSpinlock, STATIC_SPINLOCK_INIT};
///
/// static SPLCK: StaticSpinlock = STATIC_SPINLOCK_INIT;
///
/// fn demo() {
///     let lock = SPLCK.lock();
///     // do something with lock
///     drop(lock);
/// }
/// ```
pub type StaticSpinlock = Spinlock<()>;

/// A initializer for StaticSpinlock, containing no data.
pub const STATIC_SPINLOCK_INIT: StaticSpinlock = Spinlock {
    lock: ATOMIC_BOOL_INIT,
    data: UnsafeCell::new(()),
};

//#[deprecated = "renamed to STATIC_SPINLOCK_INIT"]
pub const INIT_STATIC_SPINLOCK: StaticSpinlock = STATIC_SPINLOCK_INIT;

impl<T> Spinlock<T>
{
    /// Creates a new spinlock wrapping the supplied data.
    pub fn new(user_data: T) -> Spinlock<T>
    {
        Spinlock
        {
            lock: ATOMIC_BOOL_INIT,
            data: UnsafeCell::new(user_data),
        }
    }

    fn obtain_lock(&self)
    {
        while self.lock.compare_and_swap(false, true, Ordering::SeqCst) != false
        {
            // Do nothing
        }
    }

    /// Locks the spinlock and returns a guard.
    ///
    /// The returned value may be dereferenced for data access
    /// and the lock will be dropped when the guard falls out of scope.
    ///
    /// ```
    /// let mylock = spinlock::Spinlock::new(0);
    /// {
    ///     let mut data = mylock.lock();
    ///     // The lock is now locked and the data can be accessed
    ///     *data += 1;
    /// }
    /// // The lock is dropped
    /// ```
    pub fn lock(&self) -> SpinlockGuard<T>
    {
        self.obtain_lock();
        SpinlockGuard
        {
            lock: &self.lock,
            data: unsafe { &mut *self.data.get() },
        }
    }
}

impl<'a, T> Deref for SpinlockGuard<'a, T>
{
    type Target = T;
    fn deref<'b>(&'b self) -> &'b T { &*self.data }
}

impl<'a, T> DerefMut for SpinlockGuard<'a, T>
{
    fn deref_mut<'b>(&'b mut self) -> &'b mut T { &mut *self.data }
}

impl<'a, T> Drop for SpinlockGuard<'a, T>
{
    /// The dropping of the SpinlockGuard will release the lock it was created from.
    fn drop(&mut self)
    {
        self.lock.store(false, Ordering::SeqCst);
    }
}