1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//! Accurate sleeping. Only use native sleep as far as it can be trusted, then spin.
//!
//! The problem with `thread::sleep` is it isn't always very accurate, and this accuracy varies
//! on platform and state. Spinning is as accurate as we can get, but consumes the CPU
//! rather ungracefully.
//!
//! This library adds a middle ground, using a configurable native accuracy setting allowing
//! `thread::sleep` to wait the bulk of a sleep time, and spin the final section to guarantee
//! accuracy.
//!
//! # Examples
//!
//! Simplest usage with default native accuracy is a drop in replacement for `thread::sleep`.
//! ```no_run
//! # use std::time::Duration;
//! spin_sleep::sleep(Duration::new(1, 12_550_000));
//! ```
//!
//! More advanced usage, including setting a custom native accuracy, can be achieved by
//! constructing a `SpinSleeper`.
//! ```no_run
//! # use std::time::Duration;
//! // Create a new sleeper that trusts native thread::sleep with 100μs accuracy
//! let spin_sleeper = spin_sleep::SpinSleeper::new(100_000);
//!
//! // Sleep for 1.01255 seconds, this will:
//! //  - thread:sleep for 1.01245 seconds, ie 100μs less than the requested duration
//! //  - spin until total 1.01255 seconds have elapsed
//! spin_sleeper.sleep(Duration::new(1, 12_550_000));
//! ```
//!
//! Sleep can also requested in `f64` seconds or `u64` nanoseconds
//! (useful when used with `time` crate)
//!
//! ```no_run
//! # use std::time::Duration;
//! # let spin_sleeper = spin_sleep::SpinSleeper::new(100_000);
//! spin_sleeper.sleep_s(1.01255);
//! spin_sleeper.sleep_ns(1_012_550_000);
//! ```
//!
//! OS-specific default accuracy settings should be good enough for most cases.
//! ```
//! # use spin_sleep::SpinSleeper;
//! let sleeper = SpinSleeper::default();
//! # let _ = sleeper;
//! ```
mod loop_helper;

pub use crate::loop_helper::*;
use std::{
    thread,
    time::{Duration, Instant},
};

/// Marker alias to show the meaning of a `f64` in certain methods.
pub type Seconds = f64;
/// Marker alias to show the meaning of a `f64` in certain methods.
pub type RatePerSecond = f64;
/// Marker alias to show the meaning of a `u64` in certain methods.
pub type Nanoseconds = u64;
/// Marker alias to show the meaning of a `u32` in certain methods.
pub type SubsecondNanoseconds = u32;

/// Accuracy container for spin sleeping. See [crate docs](index.html).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct SpinSleeper {
    native_accuracy_ns: u32,
}

#[cfg(not(windows))]
const DEFAULT_NATIVE_SLEEP_ACCURACY: SubsecondNanoseconds = 125_000;

#[cfg(not(windows))]
#[inline]
pub(crate) fn thread_sleep(duration: Duration) {
    thread::sleep(duration)
}

#[cfg(windows)]
static MIN_TIME_PERIOD: once_cell::sync::Lazy<winapi::shared::minwindef::UINT> =
    once_cell::sync::Lazy::new(|| unsafe {
        use std::mem;
        use winapi::um::{mmsystem::*, timeapi::timeGetDevCaps};

        let tc_size = mem::size_of::<TIMECAPS>() as u32;
        let mut tc = TIMECAPS {
            wPeriodMin: 0,
            wPeriodMax: 0,
        };

        if timeGetDevCaps(&mut tc as *mut TIMECAPS, tc_size) == TIMERR_NOERROR {
            tc.wPeriodMin
        } else {
            1
        }
    });

#[cfg(windows)]
#[inline]
pub(crate) fn thread_sleep(duration: Duration) {
    unsafe {
        use winapi::um::timeapi::{timeBeginPeriod, timeEndPeriod};
        timeBeginPeriod(*MIN_TIME_PERIOD);
        thread::sleep(duration);
        timeEndPeriod(*MIN_TIME_PERIOD);
    }
}

impl Default for SpinSleeper {
    /// Constructs new SpinSleeper with defaults suiting the current OS
    #[inline]
    fn default() -> Self {
        #[cfg(windows)]
        let accuracy = *MIN_TIME_PERIOD * 1_000_000;
        #[cfg(not(windows))]
        let accuracy = DEFAULT_NATIVE_SLEEP_ACCURACY;

        SpinSleeper::new(accuracy)
    }
}

impl SpinSleeper {
    /// Constructs new SpinSleeper with the input native sleep accuracy.
    /// The lower the `native_accuracy_ns` the more we effectively trust the accuracy of the
    /// `thread::sleep` function.
    #[inline]
    pub fn new(native_accuracy_ns: SubsecondNanoseconds) -> SpinSleeper {
        SpinSleeper { native_accuracy_ns }
    }

    /// Returns configured native_accuracy_ns
    pub fn native_accuracy_ns(self) -> SubsecondNanoseconds {
        self.native_accuracy_ns
    }

    /// Puts the current thread to sleep, if duration is long enough, then spins until the
    /// specified duration has elapsed.
    ///
    /// **Windows**: Automatically selects the best native sleep accuracy generally achieving ~1ms
    /// native sleep accuracy, instead of default ~16ms.
    pub fn sleep(self, duration: Duration) {
        let start = Instant::now();
        let accuracy = Duration::new(0, self.native_accuracy_ns);
        if duration > accuracy {
            thread_sleep(duration - accuracy);
        }
        // spin the rest of the duration
        while start.elapsed() < duration {
            thread::yield_now();
        }
    }

    /// Puts the current thread to sleep, if duration is long enough, then spins until the
    /// specified second duration has elapsed.
    ///
    /// **Windows**: Automatically selects the best native sleep accuracy generally achieving ~1ms
    /// native sleep accuracy, instead of default ~16ms.
    pub fn sleep_s(self, seconds: Seconds) {
        if seconds > 0.0 {
            self.sleep(Duration::from_secs_f64(seconds));
        }
    }

    /// Puts the current thread to sleep, if duration is long enough, then spins until the
    /// specified nanosecond duration has elapsed.
    ///
    /// **Windows**: Automatically selects the best native sleep accuracy generally achieving ~1ms
    /// native sleep accuracy, instead of default ~16ms.
    pub fn sleep_ns(self, nanoseconds: Nanoseconds) {
        let subsec_ns = (nanoseconds % 1_000_000_000) as u32;
        let seconds = nanoseconds / 1_000_000_000;
        self.sleep(Duration::new(seconds, subsec_ns))
    }
}

/// Puts the current thread to sleep, if duration is long enough, then spins until the
/// specified nanosecond duration has elapsed.
///
/// Uses default native accuracy.
///
/// Convenience function for `SpinSleeper::default().sleep(duration)`. Can directly take the
/// place of `thread::sleep`.
///
/// **Windows**: Automatically selects the best native sleep accuracy generally achieving ~1ms
/// native sleep accuracy, instead of default ~16ms.
pub fn sleep(duration: Duration) {
    SpinSleeper::default().sleep(duration);
}

// Not run unless specifically enabled with `cargo test --features "nondeterministic_tests"`
// Travis does not do well with these tests, as they require a certain CPU priority.
#[cfg(feature = "nondeterministic_tests")]
#[cfg(test)]
mod spin_sleep_test {
    use super::*;

    // The worst case error is unbounded even when spinning, but this accuracy is reasonable
    // for most platforms.
    const ACCEPTABLE_DELTA_NS: SubsecondNanoseconds = 50_000;

    // Since on spin performance is not guaranteed it suffices that the assertions are valid
    // 'most of the time'. This macro should avoid most 1-off failures.
    macro_rules! passes_eventually {
        ($test:stmt) => {{
            let mut error = None;
            for _ in 0..50 {
                match ::std::panic::catch_unwind(|| {
                    $test;
                }) {
                    Ok(_) => break,
                    Err(err) => {
                        // test is failing, maybe due to spin unreliability
                        error = error.or(Some(err));
                        thread::sleep(Duration::new(0, 1000));
                    }
                }
            }
            assert!(
                error.is_none(),
                "Test failed 50/50 times: {:?}",
                error.unwrap()
            );
        }};
    }

    #[test]
    fn sleep_small() {
        passes_eventually!({
            let ns_duration = 12_345_678;

            let ps = SpinSleeper::new(20_000_000);
            ps.sleep(Duration::new(0, 1000)); // warm up

            let before = Instant::now();
            ps.sleep(Duration::new(0, ns_duration));
            let after = Instant::now();

            println!("Actual: {:?}", after.duration_since(before));
            assert!(
                after.duration_since(before) <= Duration::new(0, ns_duration + ACCEPTABLE_DELTA_NS)
            );
            assert!(
                after.duration_since(before) >= Duration::new(0, ns_duration - ACCEPTABLE_DELTA_NS)
            );
        });
    }

    #[test]
    fn sleep_big() {
        passes_eventually!({
            let ns_duration = 212_345_678;

            let ps = SpinSleeper::new(20_000_000);
            ps.sleep(Duration::new(0, 1000)); // warm up

            let before = Instant::now();
            ps.sleep(Duration::new(1, ns_duration));
            let after = Instant::now();

            println!("Actual: {:?}", after.duration_since(before));
            assert!(
                after.duration_since(before) <= Duration::new(1, ns_duration + ACCEPTABLE_DELTA_NS)
            );
            assert!(
                after.duration_since(before) >= Duration::new(1, ns_duration - ACCEPTABLE_DELTA_NS)
            );
        });
    }

    #[test]
    fn sleep_s() {
        passes_eventually!({
            let ns_duration = 12_345_678_f64;

            let ps = SpinSleeper::new(20_000_000);
            ps.sleep_s(0.000001); // warm up

            let before = Instant::now();
            ps.sleep_s(ns_duration / 1_000_000_000_f64);
            let after = Instant::now();

            println!("Actual: {:?}", after.duration_since(before));
            assert!(
                after.duration_since(before)
                    <= Duration::new(0, ns_duration.round() as u32 + ACCEPTABLE_DELTA_NS)
            );
            assert!(
                after.duration_since(before)
                    >= Duration::new(0, ns_duration.round() as u32 - ACCEPTABLE_DELTA_NS)
            );
        });
    }

    #[test]
    fn sleep_ns() {
        passes_eventually!({
            let ns_duration: u32 = 12_345_678;

            let ps = SpinSleeper::new(20_000_000);
            ps.sleep_ns(1000); // warm up

            let before = Instant::now();
            ps.sleep_ns(ns_duration as u64);
            let after = Instant::now();

            println!("Actual: {:?}", after.duration_since(before));
            assert!(
                after.duration_since(before) <= Duration::new(0, ns_duration + ACCEPTABLE_DELTA_NS)
            );
            assert!(
                after.duration_since(before) >= Duration::new(0, ns_duration - ACCEPTABLE_DELTA_NS)
            );
        });
    }
}

#[test]
#[ignore]
fn print_estimated_thread_sleep_accuracy() {
    let mut best = Duration::from_secs(100);
    let mut sum = Duration::from_secs(0);
    let mut worst = Duration::from_secs(0);

    for _ in 0..100 {
        let before = Instant::now();
        thread_sleep(Duration::new(0, 1));
        let elapsed = before.elapsed();
        sum += elapsed;
        if elapsed < best {
            best = elapsed;
        }
        if elapsed > worst {
            worst = elapsed;
        }
    }

    println!(
        "average: {:?}, best : {:?}, worst: {:?}",
        Duration::from_nanos((sum.subsec_nanos() / 100).into()),
        best,
        worst,
    );

    panic!("Manual use only, ignore when done");
}