1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
//! A lock that provides data access to either one writer or many readers.

use core::{
    cell::UnsafeCell,
    ops::{Deref, DerefMut},
    sync::atomic::{AtomicUsize, Ordering},
    marker::PhantomData,
    fmt,
    mem,
};
use crate::{RelaxStrategy, Spin};

/// A lock that provides data access to either one writer or many readers.
///
/// This lock behaves in a similar manner to its namesake `std::sync::RwLock` but uses
/// spinning for synchronisation instead. Unlike its namespace, this lock does not
/// track lock poisoning.
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies `Send` to be shared across tasks and `Sync` to
/// allow concurrent access through readers. The RAII guards returned from the
/// locking methods implement `Deref` (and `DerefMut` for the `write` methods)
/// to allow access to the contained of the lock.
///
/// An [`RwLockUpgradableGuard`](RwLockUpgradableGuard) can be upgraded to a
/// writable guard through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade)
/// [`RwLockUpgradableGuard::try_upgrade`](RwLockUpgradableGuard::try_upgrade) functions.
/// Writable or upgradeable guards can be downgraded through their respective `downgrade`
/// functions.
///
/// Based on Facebook's
/// [`folly/RWSpinLock.h`](https://github.com/facebook/folly/blob/a0394d84f2d5c3e50ebfd0566f9d3acb52cfab5a/folly/synchronization/RWSpinLock.h).
/// This implementation is unfair to writers - if the lock always has readers, then no writers will
/// ever get a chance. Using an upgradeable lock guard can *somewhat* alleviate this issue as no
/// new readers are allowed when an upgradeable guard is held, but upgradeable guards can be taken
/// when there are existing readers. However if the lock is that highly contended and writes are
/// crucial then this implementation may be a poor choice.
///
/// # Examples
///
/// ```
/// use spin;
///
/// let lock = spin::RwLock::new(5);
///
/// // many reader locks can be held at once
/// {
///     let r1 = lock.read();
///     let r2 = lock.read();
///     assert_eq!(*r1, 5);
///     assert_eq!(*r2, 5);
/// } // read locks are dropped at this point
///
/// // only one write lock may be held, however
/// {
///     let mut w = lock.write();
///     *w += 1;
///     assert_eq!(*w, 6);
/// } // write lock is dropped here
/// ```
pub struct RwLock<T: ?Sized, R = Spin> {
    phantom: PhantomData<R>,
    lock: AtomicUsize,
    data: UnsafeCell<T>,
}

const READER: usize = 1 << 2;
const UPGRADED: usize = 1 << 1;
const WRITER: usize = 1;

/// A guard that provides immutable data access.
///
/// When the guard falls out of scope it will decrement the read count,
/// potentially releasing the lock.
pub struct RwLockReadGuard<'a, T: 'a + ?Sized> {
    lock: &'a AtomicUsize,
    data: &'a T,
}

/// A guard that provides mutable data access.
///
/// When the guard falls out of scope it will release the lock.
pub struct RwLockWriteGuard<'a, T: 'a + ?Sized, R = Spin> {
    phantom: PhantomData<R>,
    inner: &'a RwLock<T, R>,
    data: &'a mut T,
}

/// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`].
///
/// No writers or other upgradeable guards can exist while this is in scope. New reader
/// creation is prevented (to alleviate writer starvation) but there may be existing readers
/// when the lock is acquired.
///
/// When the guard falls out of scope it will release the lock.
pub struct RwLockUpgradableGuard<'a, T: 'a + ?Sized, R = Spin> {
    phantom: PhantomData<R>,
    inner: &'a RwLock<T, R>,
    data: &'a T,
}

// Same unsafe impls as `std::sync::RwLock`
unsafe impl<T: ?Sized + Send, R> Send for RwLock<T, R> {}
unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLock<T, R> {}

impl<T, R> RwLock<T, R> {
    /// Creates a new spinlock wrapping the supplied data.
    ///
    /// May be used statically:
    ///
    /// ```
    /// use spin;
    ///
    /// static RW_LOCK: spin::RwLock<()> = spin::RwLock::new(());
    ///
    /// fn demo() {
    ///     let lock = RW_LOCK.read();
    ///     // do something with lock
    ///     drop(lock);
    /// }
    /// ```
    #[inline]
    pub const fn new(data: T) -> Self {
        RwLock {
            phantom: PhantomData,
            lock: AtomicUsize::new(0),
            data: UnsafeCell::new(data),
        }
    }

    /// Consumes this `RwLock`, returning the underlying data.
    #[inline]
    pub fn into_inner(self) -> T {
        // We know statically that there are no outstanding references to
        // `self` so there's no need to lock.
        let RwLock { data, .. } = self;
        data.into_inner()
    }
}

impl<T: ?Sized, R: RelaxStrategy> RwLock<T, R> {
    /// Locks this rwlock with shared read access, blocking the current thread
    /// until it can be acquired.
    ///
    /// The calling thread will be blocked until there are no more writers which
    /// hold the lock. There may be other readers currently inside the lock when
    /// this method returns. This method does not provide any guarantees with
    /// respect to the ordering of whether contentious readers or writers will
    /// acquire the lock first.
    ///
    /// Returns an RAII guard which will release this thread's shared access
    /// once it is dropped.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     let mut data = mylock.read();
    ///     // The lock is now locked and the data can be read
    ///     println!("{}", *data);
    ///     // The lock is dropped
    /// }
    /// ```
    #[inline]
    pub fn read(&self) -> RwLockReadGuard<T> {
        loop {
            match self.try_read() {
                Some(guard) => return guard,
                None => R::relax(),
            }
        }
    }

    /// Lock this rwlock with exclusive write access, blocking the current
    /// thread until it can be acquired.
    ///
    /// This function will not return while other writers or other readers
    /// currently have access to the lock.
    ///
    /// Returns an RAII guard which will drop the write access of this rwlock
    /// when dropped.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     let mut data = mylock.write();
    ///     // The lock is now locked and the data can be written
    ///     *data += 1;
    ///     // The lock is dropped
    /// }
    /// ```
    #[inline]
    pub fn write(&self) -> RwLockWriteGuard<T, R> {
        loop {
            match self.try_write_internal(false) {
                Some(guard) => return guard,
                None => R::relax(),
            }
        }
    }

    /// Obtain a readable lock guard that can later be upgraded to a writable lock guard.
    /// Upgrades can be done through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade) method.
    #[inline]
    pub fn upgradeable_read(&self) -> RwLockUpgradableGuard<T, R> {
        loop {
            match self.try_upgradeable_read() {
                Some(guard) => return guard,
                None => R::relax(),
            }
        }
    }
}

impl<T: ?Sized, R> RwLock<T, R> {
    /// Attempt to acquire this lock with shared read access.
    ///
    /// This function will never block and will return immediately if `read`
    /// would otherwise succeed. Returns `Some` of an RAII guard which will
    /// release the shared access of this thread when dropped, or `None` if the
    /// access could not be granted. This method does not provide any
    /// guarantees with respect to the ordering of whether contentious readers
    /// or writers will acquire the lock first.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     match mylock.try_read() {
    ///         Some(data) => {
    ///             // The lock is now locked and the data can be read
    ///             println!("{}", *data);
    ///             // The lock is dropped
    ///         },
    ///         None => (), // no cigar
    ///     };
    /// }
    /// ```
    #[inline]
    pub fn try_read(&self) -> Option<RwLockReadGuard<T>> {
        let value = self.lock.fetch_add(READER, Ordering::Acquire);

        // We check the UPGRADED bit here so that new readers are prevented when an UPGRADED lock is held.
        // This helps reduce writer starvation.
        if value & (WRITER | UPGRADED) != 0 {
            // Lock is taken, undo.
            self.lock.fetch_sub(READER, Ordering::Release);
            None
        } else {
            Some(RwLockReadGuard {
                lock: &self.lock,
                data: unsafe { &*self.data.get() },
            })
        }
    }

    /// Return the number of readers that currently hold the lock (including upgradable readers).
    ///
    /// # Safety
    ///
    /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
    /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
    pub fn reader_count(&self) -> usize {
        let state = self.lock.load(Ordering::Relaxed);
        state / READER + (state & UPGRADED) / UPGRADED
    }

    /// Return the number of writers that currently hold the lock.
    ///
    /// Because [`RwLock`] guarantees exclusive mutable access, this function may only return either `0` or `1`.
    ///
    /// # Safety
    ///
    /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
    /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
    pub fn writer_count(&self) -> usize {
        (self.lock.load(Ordering::Relaxed) & WRITER) / WRITER
    }

    /// Force decrement the reader count.
    ///
    /// # Safety
    ///
    /// This is *extremely* unsafe if there are outstanding `RwLockReadGuard`s
    /// live, or if called more times than `read` has been called, but can be
    /// useful in FFI contexts where the caller doesn't know how to deal with
    /// RAII. The underlying atomic operation uses `Ordering::Release`.
    #[inline]
    pub unsafe fn force_read_decrement(&self) {
        debug_assert!(self.lock.load(Ordering::Relaxed) & !WRITER > 0);
        self.lock.fetch_sub(READER, Ordering::Release);
    }

    /// Force unlock exclusive write access.
    ///
    /// # Safety
    ///
    /// This is *extremely* unsafe if there are outstanding `RwLockWriteGuard`s
    /// live, or if called when there are current readers, but can be useful in
    /// FFI contexts where the caller doesn't know how to deal with RAII. The
    /// underlying atomic operation uses `Ordering::Release`.
    #[inline]
    pub unsafe fn force_write_unlock(&self) {
        debug_assert_eq!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED), 0);
        self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
    }

    #[inline(always)]
    fn try_write_internal(&self, strong: bool) -> Option<RwLockWriteGuard<T, R>> {
        if compare_exchange(
            &self.lock,
            0,
            WRITER,
            Ordering::Acquire,
            Ordering::Relaxed,
            strong,
        )
        .is_ok()
        {
            Some(RwLockWriteGuard {
                phantom: PhantomData,
                inner: self,
                data: unsafe { &mut *self.data.get() },
            })
        } else {
            None
        }
    }

    /// Attempt to lock this rwlock with exclusive write access.
    ///
    /// This function does not ever block, and it will return `None` if a call
    /// to `write` would otherwise block. If successful, an RAII guard is
    /// returned.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     match mylock.try_write() {
    ///         Some(mut data) => {
    ///             // The lock is now locked and the data can be written
    ///             *data += 1;
    ///             // The lock is implicitly dropped
    ///         },
    ///         None => (), // no cigar
    ///     };
    /// }
    /// ```
    #[inline]
    pub fn try_write(&self) -> Option<RwLockWriteGuard<T, R>> {
        self.try_write_internal(true)
    }

    /// Tries to obtain an upgradeable lock guard.
    #[inline]
    pub fn try_upgradeable_read(&self) -> Option<RwLockUpgradableGuard<T, R>> {
        if self.lock.fetch_or(UPGRADED, Ordering::Acquire) & (WRITER | UPGRADED) == 0 {
            Some(RwLockUpgradableGuard {
                phantom: PhantomData,
                inner: self,
                data: unsafe { &*self.data.get() },
            })
        } else {
            // We can't unflip the UPGRADED bit back just yet as there is another upgradeable or write lock.
            // When they unlock, they will clear the bit.
            None
        }
    }

   /// Returns a mutable reference to the underlying data.
   ///
   /// Since this call borrows the `RwLock` mutably, no actual locking needs to
   /// take place -- the mutable borrow statically guarantees no locks exist.
   ///
   /// # Examples
   ///
   /// ```
   /// let mut lock = spin::RwLock::new(0);
   /// *lock.get_mut() = 10;
   /// assert_eq!(*lock.read(), 10);
   /// ```
    pub fn get_mut(&mut self) -> &mut T {
        // We know statically that there are no other references to `self`, so
        // there's no need to lock the inner lock.
        unsafe { &mut *self.data.get() }
    }
}

impl<T: ?Sized + fmt::Debug, R> fmt::Debug for RwLock<T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.try_read() {
            Some(guard) => write!(f, "RwLock {{ data: ")
                .and_then(|()| (&*guard).fmt(f))
                .and_then(|()| write!(f, "}}")),
            None => write!(f, "RwLock {{ <locked> }}"),
        }
    }
}

impl<T: ?Sized + Default, R> Default for RwLock<T, R> {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T, R> From<T> for RwLock<T, R> {
    fn from(data: T) -> Self {
        Self::new(data)
    }
}

impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> {
    /// Leak the lock guard, yielding a reference to the underlying data.
    ///
    /// Note that this function will permanently lock the original lock for all but reading locks.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let data: &i32 = spin::RwLockReadGuard::leak(mylock.read());
    ///
    /// assert_eq!(*data, 0);
    /// ```
    #[inline]
    pub fn leak(this: Self) -> &'rwlock T {
        let Self { data, .. } = this;
        data
    }
}

impl<'rwlock, T: ?Sized + fmt::Debug> fmt::Debug for RwLockReadGuard<'rwlock, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'rwlock, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized, R: RelaxStrategy> RwLockUpgradableGuard<'rwlock, T, R> {
    /// Upgrades an upgradeable lock guard to a writable lock guard.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
    /// let writable = upgradeable.upgrade();
    /// ```
    #[inline]
    pub fn upgrade(mut self) -> RwLockWriteGuard<'rwlock, T, R> {
        loop {
            self = match self.try_upgrade_internal(false) {
                Ok(guard) => return guard,
                Err(e) => e,
            };

            R::relax();
        }
    }
}

impl<'rwlock, T: ?Sized, R> RwLockUpgradableGuard<'rwlock, T, R> {
    #[inline(always)]
    fn try_upgrade_internal(self, strong: bool) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> {
        if compare_exchange(
            &self.inner.lock,
            UPGRADED,
            WRITER,
            Ordering::Acquire,
            Ordering::Relaxed,
            strong,
        )
        .is_ok()
        {
            let inner = self.inner;

            // Forget the old guard so its destructor doesn't run (before mutably aliasing data below)
            mem::forget(self);

            // Upgrade successful
            Ok(RwLockWriteGuard {
                phantom: PhantomData,
                inner,
                data: unsafe { &mut *inner.data.get() },
            })
        } else {
            Err(self)
        }
    }

    /// Tries to upgrade an upgradeable lock guard to a writable lock guard.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
    ///
    /// match upgradeable.try_upgrade() {
    ///     Ok(writable) => /* upgrade successful - use writable lock guard */ (),
    ///     Err(upgradeable) => /* upgrade unsuccessful */ (),
    /// };
    /// ```
    #[inline]
    pub fn try_upgrade(self) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> {
        self.try_upgrade_internal(true)
    }

    #[inline]
    /// Downgrades the upgradeable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(1);
    ///
    /// let upgradeable = mylock.upgradeable_read();
    /// assert!(mylock.try_read().is_none());
    /// assert_eq!(*upgradeable, 1);
    ///
    /// let readable = upgradeable.downgrade(); // This is guaranteed not to spin
    /// assert!(mylock.try_read().is_some());
    /// assert_eq!(*readable, 1);
    /// ```
    pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
        // Reserve the read guard for ourselves
        self.inner.lock.fetch_add(READER, Ordering::Acquire);

        let inner = self.inner;

        // Dropping self removes the UPGRADED bit
        mem::drop(self);

        RwLockReadGuard {
            lock: &inner.lock,
            data: unsafe { &*inner.data.get() },
        }
    }

    /// Leak the lock guard, yielding a reference to the underlying data.
    ///
    /// Note that this function will permanently lock the original lock.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let data: &i32 = spin::RwLockUpgradableGuard::leak(mylock.upgradeable_read());
    ///
    /// assert_eq!(*data, 0);
    /// ```
    #[inline]
    pub fn leak(this: Self) -> &'rwlock T {
        let Self { data, .. } = this;
        data
    }
}

impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockUpgradableGuard<'rwlock, T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockUpgradableGuard<'rwlock, T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized, R> RwLockWriteGuard<'rwlock, T, R> {
    /// Downgrades the writable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let mut writable = mylock.write();
    /// *writable = 1;
    ///
    /// let readable = writable.downgrade(); // This is guaranteed not to spin
    /// # let readable_2 = mylock.try_read().unwrap();
    /// assert_eq!(*readable, 1);
    /// ```
    #[inline]
    pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
        // Reserve the read guard for ourselves
        self.inner.lock.fetch_add(READER, Ordering::Acquire);

        let inner = self.inner;

        // Dropping self removes the UPGRADED bit
        mem::drop(self);

        RwLockReadGuard {
            lock: &inner.lock,
            data: unsafe { &*inner.data.get() },
        }
    }

    /// Downgrades the writable lock guard to an upgradable, shared lock guard. Cannot fail and is guaranteed not to spin.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let mut writable = mylock.write();
    /// *writable = 1;
    ///
    /// let readable = writable.downgrade_to_upgradeable(); // This is guaranteed not to spin
    /// assert_eq!(*readable, 1);
    /// ```
    #[inline]
    pub fn downgrade_to_upgradeable(self) -> RwLockUpgradableGuard<'rwlock, T, R> {
        debug_assert_eq!(self.inner.lock.load(Ordering::Acquire) & (WRITER | UPGRADED), WRITER);

        // Reserve the read guard for ourselves
        self.inner.lock.store(UPGRADED, Ordering::Release);

        let inner = self.inner;

        // Dropping self removes the UPGRADED bit
        mem::forget(self);

        RwLockUpgradableGuard {
            phantom: PhantomData,
            inner,
            data: unsafe { &*inner.data.get() },
        }
    }

    /// Leak the lock guard, yielding a mutable reference to the underlying data.
    ///
    /// Note that this function will permanently lock the original lock.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let data: &mut i32 = spin::RwLockWriteGuard::leak(mylock.write());
    ///
    /// *data = 1;
    /// assert_eq!(*data, 1);
    /// ```
    #[inline]
    pub fn leak(this: Self) -> &'rwlock mut T {
        let data = this.data as *mut _; // Keep it in pointer form temporarily to avoid double-aliasing
        core::mem::forget(this);
        unsafe { &mut *data }
    }
}

impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockWriteGuard<'rwlock, T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockWriteGuard<'rwlock, T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized> Deref for RwLockReadGuard<'rwlock, T> {
    type Target = T;

    fn deref(&self) -> &T {
        self.data
    }
}

impl<'rwlock, T: ?Sized, R> Deref for RwLockUpgradableGuard<'rwlock, T, R> {
    type Target = T;

    fn deref(&self) -> &T {
        self.data
    }
}

impl<'rwlock, T: ?Sized, R> Deref for RwLockWriteGuard<'rwlock, T, R> {
    type Target = T;

    fn deref(&self) -> &T {
        self.data
    }
}

impl<'rwlock, T: ?Sized, R> DerefMut for RwLockWriteGuard<'rwlock, T, R> {
    fn deref_mut(&mut self) -> &mut T {
        self.data
    }
}

impl<'rwlock, T: ?Sized> Drop for RwLockReadGuard<'rwlock, T> {
    fn drop(&mut self) {
        debug_assert!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED) > 0);
        self.lock.fetch_sub(READER, Ordering::Release);
    }
}

impl<'rwlock, T: ?Sized, R> Drop for RwLockUpgradableGuard<'rwlock, T, R> {
    fn drop(&mut self) {
        debug_assert_eq!(
            self.inner.lock.load(Ordering::Relaxed) & (WRITER | UPGRADED),
            UPGRADED
        );
        self.inner.lock.fetch_sub(UPGRADED, Ordering::AcqRel);
    }
}

impl<'rwlock, T: ?Sized, R> Drop for RwLockWriteGuard<'rwlock, T, R> {
    fn drop(&mut self) {
        debug_assert_eq!(self.inner.lock.load(Ordering::Relaxed) & WRITER, WRITER);

        // Writer is responsible for clearing both WRITER and UPGRADED bits.
        // The UPGRADED bit may be set if an upgradeable lock attempts an upgrade while this lock is held.
        self.inner.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
    }
}

#[inline(always)]
fn compare_exchange(
    atomic: &AtomicUsize,
    current: usize,
    new: usize,
    success: Ordering,
    failure: Ordering,
    strong: bool,
) -> Result<usize, usize> {
    if strong {
        atomic.compare_exchange(current, new, success, failure)
    } else {
        atomic.compare_exchange_weak(current, new, success, failure)
    }
}

#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLock for RwLock<(), R> {
    type GuardMarker = lock_api_crate::GuardSend;

    const INIT: Self = Self::new(());

    #[inline(always)]
    fn lock_exclusive(&self) {
        // Prevent guard destructor running
        core::mem::forget(self.write());
    }

    #[inline(always)]
    fn try_lock_exclusive(&self) -> bool {
        // Prevent guard destructor running
        self.try_write().map(|g| core::mem::forget(g)).is_some()
    }

    #[inline(always)]
    unsafe fn unlock_exclusive(&self) {
        drop(RwLockWriteGuard {
            inner: self,
            data: &mut (),
            phantom: PhantomData,
        });
    }

    #[inline(always)]
    fn lock_shared(&self) {
        // Prevent guard destructor running
        core::mem::forget(self.read());
    }

    #[inline(always)]
    fn try_lock_shared(&self) -> bool {
        // Prevent guard destructor running
        self.try_read().map(|g| core::mem::forget(g)).is_some()
    }

    #[inline(always)]
    unsafe fn unlock_shared(&self) {
        drop(RwLockReadGuard {
            lock: &self.lock,
            data: &(),
        });
    }

    #[inline(always)]
    fn is_locked(&self) -> bool {
        self.lock.load(Ordering::Relaxed) != 0
    }
}

#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockUpgrade for RwLock<(), R> {
    #[inline(always)]
    fn lock_upgradable(&self) {
        // Prevent guard destructor running
        core::mem::forget(self.upgradeable_read());
    }

    #[inline(always)]
    fn try_lock_upgradable(&self) -> bool {
        // Prevent guard destructor running
        self.try_upgradeable_read().map(|g| core::mem::forget(g)).is_some()
    }

    #[inline(always)]
    unsafe fn unlock_upgradable(&self) {
        drop(RwLockUpgradableGuard {
            inner: self,
            data: &(),
            phantom: PhantomData,
        });
    }

    #[inline(always)]
    unsafe fn upgrade(&self) {
        let tmp_guard = RwLockUpgradableGuard {
            inner: self,
            data: &(),
            phantom: PhantomData,
        };
        core::mem::forget(tmp_guard.upgrade());
    }

    #[inline(always)]
    unsafe fn try_upgrade(&self) -> bool {
        let tmp_guard = RwLockUpgradableGuard {
            inner: self,
            data: &(),
            phantom: PhantomData,
        };
        tmp_guard.try_upgrade().map(|g| core::mem::forget(g)).is_ok()
    }
}

#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockDowngrade for RwLock<(), R> {
    unsafe fn downgrade(&self) {
        let tmp_guard = RwLockWriteGuard {
            inner: self,
            data: &mut (),
            phantom: PhantomData,
        };
        core::mem::forget(tmp_guard.downgrade());
    }
}

#[cfg(feature = "lock_api1")]
unsafe impl lock_api::RawRwLockUpgradeDowngrade for RwLock<()> {
    unsafe fn downgrade_upgradable(&self) {
        let tmp_guard = RwLockUpgradableGuard {
            inner: self,
            data: &(),
            phantom: PhantomData,
        };
        core::mem::forget(tmp_guard.downgrade());
    }

    unsafe fn downgrade_to_upgradable(&self) {
        let tmp_guard = RwLockWriteGuard {
            inner: self,
            data: &mut (),
            phantom: PhantomData,
        };
        core::mem::forget(tmp_guard.downgrade_to_upgradeable());
    }
}

#[cfg(test)]
mod tests {
    use std::prelude::v1::*;

    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;

    type RwLock<T> = super::RwLock<T>;

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    #[test]
    fn smoke() {
        let l = RwLock::new(());
        drop(l.read());
        drop(l.write());
        drop((l.read(), l.read()));
        drop(l.write());
    }

    // TODO: needs RNG
    //#[test]
    //fn frob() {
    //    static R: RwLock = RwLock::new();
    //    const N: usize = 10;
    //    const M: usize = 1000;
    //
    //    let (tx, rx) = channel::<()>();
    //    for _ in 0..N {
    //        let tx = tx.clone();
    //        thread::spawn(move|| {
    //            let mut rng = rand::thread_rng();
    //            for _ in 0..M {
    //                if rng.gen_weighted_bool(N) {
    //                    drop(R.write());
    //                } else {
    //                    drop(R.read());
    //                }
    //            }
    //            drop(tx);
    //        });
    //    }
    //    drop(tx);
    //    let _ = rx.recv();
    //    unsafe { R.destroy(); }
    //}

    #[test]
    fn test_rw_arc() {
        let arc = Arc::new(RwLock::new(0));
        let arc2 = arc.clone();
        let (tx, rx) = channel();

        thread::spawn(move || {
            let mut lock = arc2.write();
            for _ in 0..10 {
                let tmp = *lock;
                *lock = -1;
                thread::yield_now();
                *lock = tmp + 1;
            }
            tx.send(()).unwrap();
        });

        // Readers try to catch the writer in the act
        let mut children = Vec::new();
        for _ in 0..5 {
            let arc3 = arc.clone();
            children.push(thread::spawn(move || {
                let lock = arc3.read();
                assert!(*lock >= 0);
            }));
        }

        // Wait for children to pass their asserts
        for r in children {
            assert!(r.join().is_ok());
        }

        // Wait for writer to finish
        rx.recv().unwrap();
        let lock = arc.read();
        assert_eq!(*lock, 10);
    }

    #[test]
    fn test_rw_access_in_unwind() {
        let arc = Arc::new(RwLock::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move || -> () {
            struct Unwinder {
                i: Arc<RwLock<isize>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    let mut lock = self.i.write();
                    *lock += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        })
        .join();
        let lock = arc.read();
        assert_eq!(*lock, 2);
    }

    #[test]
    fn test_rwlock_unsized() {
        let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]);
        {
            let b = &mut *rw.write();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*rw.read(), comp);
    }

    #[test]
    fn test_rwlock_try_write() {
        use std::mem::drop;

        let lock = RwLock::new(0isize);
        let read_guard = lock.read();

        let write_result = lock.try_write();
        match write_result {
            None => (),
            Some(_) => assert!(
                false,
                "try_write should not succeed while read_guard is in scope"
            ),
        }

        drop(read_guard);
    }

    #[test]
    fn test_rw_try_read() {
        let m = RwLock::new(0);
        ::std::mem::forget(m.write());
        assert!(m.try_read().is_none());
    }

    #[test]
    fn test_into_inner() {
        let m = RwLock::new(NonCopy(10));
        assert_eq!(m.into_inner(), NonCopy(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = RwLock::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn test_force_read_decrement() {
        let m = RwLock::new(());
        ::std::mem::forget(m.read());
        ::std::mem::forget(m.read());
        ::std::mem::forget(m.read());
        assert!(m.try_write().is_none());
        unsafe {
            m.force_read_decrement();
            m.force_read_decrement();
        }
        assert!(m.try_write().is_none());
        unsafe {
            m.force_read_decrement();
        }
        assert!(m.try_write().is_some());
    }

    #[test]
    fn test_force_write_unlock() {
        let m = RwLock::new(());
        ::std::mem::forget(m.write());
        assert!(m.try_read().is_none());
        unsafe {
            m.force_write_unlock();
        }
        assert!(m.try_read().is_some());
    }

    #[test]
    fn test_upgrade_downgrade() {
        let m = RwLock::new(());
        {
            let _r = m.read();
            let upg = m.try_upgradeable_read().unwrap();
            assert!(m.try_read().is_none());
            assert!(m.try_write().is_none());
            assert!(upg.try_upgrade().is_err());
        }
        {
            let w = m.write();
            assert!(m.try_upgradeable_read().is_none());
            let _r = w.downgrade();
            assert!(m.try_upgradeable_read().is_some());
            assert!(m.try_read().is_some());
            assert!(m.try_write().is_none());
        }
        {
            let _u = m.upgradeable_read();
            assert!(m.try_upgradeable_read().is_none());
        }

        assert!(m.try_upgradeable_read().unwrap().try_upgrade().is_ok());
    }
}