1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use core::cell::UnsafeCell;
use core::sync::atomic::{AtomicUsize, Ordering};

use util::cpu_relax;

/// A synchronization primitive which can be used to run a one-time global
/// initialization. Unlike its std equivalent, this is generalized so that The
/// closure returns a value and it is stored. Once therefore acts something like
/// 1a future, too.
///
/// # Examples
///
/// ```
/// #![feature(const_fn)]
/// use spin;
///
/// static START: spin::Once<()> = spin::Once::new();
///
/// START.call_once(|| {
///     // run initialization here
/// });
/// ```
pub struct Once<T> {
    state: AtomicUsize,
    data: UnsafeCell<Option<T>>, // TODO remove option and use mem::uninitialized
}

// Same unsafe impls as `std::sync::RwLock`, because this also allows for
// concurrent reads.
unsafe impl<T: Sync + Sync> Sync for Once<T> {}
unsafe impl<T: Sync + Sync> Send for Once<T> {}

// Four states that a Once can be in, encoded into the lower bits of `state` in
// the Once structure.
const INCOMPLETE: usize = 0x0;
const RUNNING: usize = 0x1;
const COMPLETE: usize = 0x2;
const PANICKED: usize = 0x3;

#[cfg(feature = "core_intrinsics")]
#[inline(always)]
fn unreachable() -> ! {
    unsafe { ::core::intrinsics::unreachable() }
}

#[cfg(not(feature = "core_intrinsics"))]
#[inline(always)]
fn unreachable() -> ! {
    unreachable!()
}

impl<T> Once<T> {
    /// Creates a new `Once` value.
    pub const fn new() -> Once<T> {
        Once {
            state: AtomicUsize::new(INCOMPLETE),
            data: UnsafeCell::new(None),
        }
    }

    fn force_get<'a>(&'a self) -> &'a T {
        match unsafe { &*self.data.get() }.as_ref() {
            None    => unreachable(),
            Some(p) => p,
        }
    }

    /// Performs an initialization routine once and only once. The given closure
    /// will be executed if this is the first time `call_once` has been called,
    /// and otherwise the routine will *not* be invoked.
    ///
    /// This method will block the calling thread if another initialization
    /// routine is currently running.
    ///
    /// When this function returns, it is guaranteed that some initialization
    /// has run and completed (it may not be the closure specified). The
    /// returned pointer points to the return value of when of those
    /// initialization closures.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(const_fn)]
    /// use spin;
    ///
    /// static INIT: spin::Once<usize> = spin::Once::new();
    ///
    /// fn get_cached_val() -> usize {
    ///     *INIT.call_once(expensive_computation)
    /// }
    ///
    /// fn expensive_computation() -> usize {
    ///     // ...
    /// # 2
    /// }
    /// ```
    pub fn call_once<'a, F>(&'a self, builder: F) -> &'a T
        where F: FnOnce() -> T
    {
        let mut status = self.state.load(Ordering::SeqCst);

        if status == INCOMPLETE {
            status = self.state.compare_and_swap(INCOMPLETE,
                                                 RUNNING,
                                                 Ordering::SeqCst);
            if status == INCOMPLETE { // We init
                // We use a guard (Finish) to catch panics caused by builder
                let mut finish = Finish { state: &self.state, panicked: true };
                unsafe { *self.data.get() = Some(builder()) };
                finish.panicked = false;

                status = COMPLETE;
                self.state.store(status, Ordering::SeqCst);

                // This next line is strictly an optomization
                return self.force_get();
            }
        }

        loop {
            match status {
                INCOMPLETE => unreachable!(),
                RUNNING => { // We spin
                    cpu_relax();
                    status = self.state.load(Ordering::SeqCst)
                },
                PANICKED => panic!("Once has panicked"),
                COMPLETE => return self.force_get(),
                _ => unreachable(),
            }
        }
    }

    /// Returns a pointer iff the `Once` was previously initialized
    pub fn try<'a>(&'a self) -> Option<&'a T> {
        match self.state.load(Ordering::SeqCst) {
            COMPLETE => Some(self.force_get()),
            _        => None,
        }
    }

    /// Like try, but will spin if the `Once` is in the process of being
    /// initialized
    pub fn wait<'a>(&'a self) -> Option<&'a T> {
        loop {
            match self.state.load(Ordering::SeqCst) {
                INCOMPLETE => return None,
                RUNNING    => cpu_relax(), // We spin
                COMPLETE   => return Some(self.force_get()),
                PANICKED   => panic!("Once has panicked"),
                _ => unreachable(),
            }
        }
    }
}

struct Finish<'a> {
    state: &'a AtomicUsize,
    panicked: bool,
}

impl<'a> Drop for Finish<'a> {
    fn drop(&mut self) {
        if self.panicked {
            self.state.store(PANICKED, Ordering::SeqCst);
        }
    }
}

#[cfg(test)]
mod tests {
    use std::prelude::v1::*;

    use std::sync::mpsc::channel;
    use std::thread;
    use super::Once;

    #[test]
    fn smoke_once() {
        static O: Once<()> = Once::new();
        let mut a = 0;
        O.call_once(|| a += 1);
        assert_eq!(a, 1);
        O.call_once(|| a += 1);
        assert_eq!(a, 1);
    }

    #[test]
    fn smoke_once_value() {
        static O: Once<usize> = Once::new();
        let a = O.call_once(|| 1);
        assert_eq!(*a, 1);
        let b = O.call_once(|| 2);
        assert_eq!(*b, 1);
    }

    #[test]
    fn stampede_once() {
        static O: Once<()> = Once::new();
        static mut run: bool = false;

        let (tx, rx) = channel();
        for _ in 0..10 {
            let tx = tx.clone();
            thread::spawn(move|| {
                for _ in 0..4 { thread::yield_now() }
                unsafe {
                    O.call_once(|| {
                        assert!(!run);
                        run = true;
                    });
                    assert!(run);
                }
                tx.send(()).unwrap();
            });
        }

        unsafe {
            O.call_once(|| {
                assert!(!run);
                run = true;
            });
            assert!(run);
        }

        for _ in 0..10 {
            rx.recv().unwrap();
        }
    }

    #[test]
    fn try() {
        static INIT: Once<usize> = Once::new();

        assert!(INIT.try().is_none());
        INIT.call_once(|| 2);
        assert_eq!(INIT.try().map(|r| *r), Some(2));
    }

    #[test]
    fn try_no_wait() {
        static INIT: Once<usize> = Once::new();

        assert!(INIT.try().is_none());
        thread::spawn(move|| {
            INIT.call_once(|| loop { });
        });
        assert!(INIT.try().is_none());
    }


    #[test]
    fn wait() {
        static INIT: Once<usize> = Once::new();

        assert!(INIT.wait().is_none());
        INIT.call_once(|| 3);
        assert_eq!(INIT.wait().map(|r| *r), Some(3));
    }

    #[test]
    fn panic() {
        use ::std::panic;

        static INIT: Once<()> = Once::new();

        // poison the once
        let t = panic::catch_unwind(|| {
            INIT.call_once(|| panic!());
        });
        assert!(t.is_err());

        // poisoning propagates
        let t = panic::catch_unwind(|| {
            INIT.call_once(|| {});
        });
        assert!(t.is_err());
    }
}