1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// Copyright 2015, Paul Osborne <osbpau@gmail.com>
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/license/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option.  This file may not be copied, modified, or distributed
// except according to those terms.

// macros import
use super::SpiModeFlags;
use nix::{ioctl_read, ioctl_write_buf, ioctl_write_ptr};
use std::io;
use std::marker::PhantomData;
use std::os::unix::prelude::*;

fn from_nix_result<T>(res: ::nix::Result<T>) -> io::Result<T> {
    match res {
        Ok(r) => Ok(r),
        Err(err) => Err(err.into()),
    }
}

/// Structure that is used when performing communication
/// with the kernel.
///
/// From the kernel documentation:
///
/// ```text
/// struct spi_ioc_transfer - describes a single SPI transfer
/// @tx_buf: Holds pointer to userspace buffer with transmit data, or null.
///   If no data is provided, zeroes are shifted out.
/// @rx_buf: Holds pointer to userspace buffer for receive data, or null.
/// @len: Length of tx and rx buffers, in bytes.
/// @speed_hz: Temporary override of the device's bitrate.
/// @bits_per_word: Temporary override of the device's wordsize.
/// @delay_usecs: If nonzero, how long to delay after the last bit transfer
///      before optionally deselecting the device before the next transfer.
/// @cs_change: True to deselect device before starting the next transfer.
///
/// This structure is mapped directly to the kernel spi_transfer structure;
/// the fields have the same meanings, except of course that the pointers
/// are in a different address space (and may be of different sizes in some
/// cases, such as 32-bit i386 userspace over a 64-bit x86_64 kernel).
/// Zero-initialize the structure, including currently unused fields, to
/// accommodate potential future updates.
///
/// SPI_IOC_MESSAGE gives userspace the equivalent of kernel spi_sync().
/// Pass it an array of related transfers, they'll execute together.
/// Each transfer may be half duplex (either direction) or full duplex.
///
///      struct spi_ioc_transfer mesg[4];
///      ...
///      status = ioctl(fd, SPI_IOC_MESSAGE(4), mesg);
///
/// So for example one transfer might send a nine bit command (right aligned
/// in a 16-bit word), the next could read a block of 8-bit data before
/// terminating that command by temporarily deselecting the chip; the next
/// could send a different nine bit command (re-selecting the chip), and the
/// last transfer might write some register values.
/// ```
#[allow(non_camel_case_types)]
#[derive(Debug, Default)]
#[repr(C)]
pub struct spi_ioc_transfer<'a, 'b> {
    tx_buf: u64,
    rx_buf: u64,
    len: u32,

    // optional overrides
    pub speed_hz: u32,
    pub delay_usecs: u16,
    pub bits_per_word: u8,
    pub cs_change: u8,
    pub pad: u32,

    tx_buf_ref: PhantomData<&'a [u8]>,
    rx_buf_ref: PhantomData<&'b mut [u8]>,
}

impl<'a, 'b> spi_ioc_transfer<'a, 'b> {
    /// Create a read transfer
    pub fn read(buff: &'b mut [u8]) -> Self {
        spi_ioc_transfer {
            rx_buf: buff.as_ptr() as *const () as usize as u64,
            len: buff.len() as u32,
            ..Default::default()
        }
    }

    /// Create a write transfer
    pub fn write(buff: &'a [u8]) -> Self {
        spi_ioc_transfer {
            tx_buf: buff.as_ptr() as *const () as usize as u64,
            len: buff.len() as u32,
            ..Default::default()
        }
    }

    /// Create a read/write transfer.
    /// Note that the `tx_buf` and `rx_buf` must be the same length.
    pub fn read_write(tx_buf: &'a [u8], rx_buf: &'b mut [u8]) -> Self {
        assert_eq!(tx_buf.len(), rx_buf.len());
        spi_ioc_transfer {
            rx_buf: rx_buf.as_ptr() as *const () as usize as u64,
            tx_buf: tx_buf.as_ptr() as *const () as usize as u64,
            len: tx_buf.len() as u32,
            ..Default::default()
        }
    }

    /// Create a delay transfer of a number of microseconds
    pub fn delay(microseconds: u16) -> Self {
        spi_ioc_transfer {
            delay_usecs: microseconds,
            len: 0,
            ..Default::default()
        }
    }
}

mod ioctl {
    use super::*;

    const SPI_IOC_MAGIC: u8 = b'k';
    const SPI_IOC_NR_TRANSFER: u8 = 0;
    const SPI_IOC_NR_MODE: u8 = 1;
    const SPI_IOC_NR_LSB_FIRST: u8 = 2;
    const SPI_IOC_NR_BITS_PER_WORD: u8 = 3;
    const SPI_IOC_NR_MAX_SPEED_HZ: u8 = 4;
    const SPI_IOC_NR_MODE32: u8 = 5;

    ioctl_read!(get_mode_u8, SPI_IOC_MAGIC, SPI_IOC_NR_MODE, u8);
    ioctl_read!(get_mode_u32, SPI_IOC_MAGIC, SPI_IOC_NR_MODE32, u32);
    ioctl_write_ptr!(set_mode, SPI_IOC_MAGIC, SPI_IOC_NR_MODE, u8);
    ioctl_write_ptr!(set_mode32, SPI_IOC_MAGIC, SPI_IOC_NR_MODE32, u32);

    ioctl_read!(get_lsb_first, SPI_IOC_MAGIC, SPI_IOC_NR_LSB_FIRST, u8);
    ioctl_write_ptr!(set_lsb_first, SPI_IOC_MAGIC, SPI_IOC_NR_LSB_FIRST, u8);

    ioctl_read!(
        get_bits_per_word,
        SPI_IOC_MAGIC,
        SPI_IOC_NR_BITS_PER_WORD,
        u8
    );
    ioctl_write_ptr!(
        set_bits_per_word,
        SPI_IOC_MAGIC,
        SPI_IOC_NR_BITS_PER_WORD,
        u8
    );

    ioctl_read!(
        get_max_speed_hz,
        SPI_IOC_MAGIC,
        SPI_IOC_NR_MAX_SPEED_HZ,
        u32
    );
    ioctl_write_ptr!(
        set_max_speed_hz,
        SPI_IOC_MAGIC,
        SPI_IOC_NR_MAX_SPEED_HZ,
        u32
    );

    // NOTE: this macro works for single transfers but cannot properly
    // calculate size for multi transfer whose length we will not know
    // until runtime.  We fallback to using the underlying ioctl for that
    // use case.
    ioctl_write_ptr!(
        spidev_transfer,
        SPI_IOC_MAGIC,
        SPI_IOC_NR_TRANSFER,
        spi_ioc_transfer
    );
    ioctl_write_buf!(
        spidev_transfer_buf,
        SPI_IOC_MAGIC,
        SPI_IOC_NR_TRANSFER,
        spi_ioc_transfer
    );
}

/// Representation of a spidev transfer that is shared
/// with external users
pub type SpidevTransfer<'a, 'b> = spi_ioc_transfer<'a, 'b>;

pub fn get_mode(fd: RawFd) -> io::Result<u8> {
    let mut mode: u8 = 0;
    from_nix_result(unsafe { ioctl::get_mode_u8(fd, &mut mode) })?;
    Ok(mode)
}

pub fn set_mode(fd: RawFd, mode: SpiModeFlags) -> io::Result<()> {
    // we will always use the 8-bit mode write unless bits not in
    // the 8-bit mask are used.  This is because WR_MODE32 was not
    // added until later kernels.  This provides a reasonable story
    // for forwards and backwards compatibility
    if (mode.bits() & 0xFFFFFF00) != 0 {
        from_nix_result(unsafe { ioctl::set_mode32(fd, &mode.bits()) })?;
    } else {
        let bits: u8 = mode.bits() as u8;
        from_nix_result(unsafe { ioctl::set_mode(fd, &bits) })?;
    }
    Ok(())
}

pub fn get_lsb_first(fd: RawFd) -> io::Result<u8> {
    let mut lsb_first: u8 = 0;
    from_nix_result(unsafe { ioctl::get_lsb_first(fd, &mut lsb_first) })?;
    Ok(lsb_first)
}

pub fn set_lsb_first(fd: RawFd, lsb_first: bool) -> io::Result<()> {
    let lsb_first_value: u8 = if lsb_first { 1 } else { 0 };
    from_nix_result(unsafe { ioctl::set_lsb_first(fd, &lsb_first_value) })?;
    Ok(())
}

pub fn get_bits_per_word(fd: RawFd) -> io::Result<u8> {
    let mut bits_per_word: u8 = 0;
    from_nix_result(unsafe { ioctl::get_bits_per_word(fd, &mut bits_per_word) })?;
    Ok(bits_per_word)
}

pub fn set_bits_per_word(fd: RawFd, bits_per_word: u8) -> io::Result<()> {
    from_nix_result(unsafe { ioctl::set_bits_per_word(fd, &bits_per_word) })?;
    Ok(())
}

pub fn get_max_speed_hz(fd: RawFd) -> io::Result<u32> {
    let mut max_speed_hz: u32 = 0;
    from_nix_result(unsafe { ioctl::get_max_speed_hz(fd, &mut max_speed_hz) })?;
    Ok(max_speed_hz)
}

pub fn set_max_speed_hz(fd: RawFd, max_speed_hz: u32) -> io::Result<()> {
    from_nix_result(unsafe { ioctl::set_max_speed_hz(fd, &max_speed_hz) })?;
    Ok(())
}

pub fn transfer(fd: RawFd, transfer: &mut SpidevTransfer) -> io::Result<()> {
    // The kernel will directly modify the rx_buf of the SpidevTransfer
    // rx_buf if present, so there is no need to do any additional work
    from_nix_result(unsafe { ioctl::spidev_transfer(fd, transfer) })?;
    Ok(())
}

pub fn transfer_multiple(fd: RawFd, transfers: &mut [SpidevTransfer]) -> io::Result<()> {
    from_nix_result(unsafe { ioctl::spidev_transfer_buf(fd, transfers) })?;
    Ok(())
}