1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//! Driver for 25-series SPI Flash and EEPROM chips.

use crate::{utils::HexSlice, BlockDevice, Error, Read};
use bitflags::bitflags;
use core::convert::TryInto;
use core::fmt;
use embedded_hal::blocking::spi::Transfer;
use embedded_hal::digital::v2::OutputPin;

/// 3-Byte JEDEC manufacturer and device identification.
pub struct Identification {
    /// Data collected
    /// - First byte is the manufacturer's ID code from eg JEDEC Publication No. 106AJ
    /// - The trailing bytes are a manufacturer-specific device ID.
    bytes: [u8; 3],

    /// The number of continuations that precede the main manufacturer ID
    continuations: u8,
}

impl Identification {
    /// Build an Identification from JEDEC ID bytes.
    pub fn from_jedec_id(buf: &[u8]) -> Identification {
        // Example response for Cypress part FM25V02A:
        // 7F 7F 7F 7F 7F 7F C2 22 08  (9 bytes)
        // 0x7F is a "continuation code", not part of the core manufacturer ID
        // 0xC2 is the company identifier for Cypress (Ramtron)

        // Find the end of the continuation bytes (0x7F)
        let mut start_idx = 0;
        for i in 0..(buf.len() - 2) {
            if buf[i] != 0x7F {
                start_idx = i;
                break;
            }
        }

        Self {
            bytes: [buf[start_idx], buf[start_idx + 1], buf[start_idx + 2]],
            continuations: start_idx as u8,
        }
    }

    /// The JEDEC manufacturer code for this chip.
    pub fn mfr_code(&self) -> u8 {
        self.bytes[0]
    }

    /// The manufacturer-specific device ID for this chip.
    pub fn device_id(&self) -> &[u8] {
        self.bytes[1..].as_ref()
    }

    /// Number of continuation codes in this chip ID.
    ///
    /// For example the ARM Ltd identifier is `7F 7F 7F 7F 3B` (5 bytes), so
    /// the continuation count is 4.
    pub fn continuation_count(&self) -> u8 {
        self.continuations
    }
}

impl fmt::Debug for Identification {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Identification")
            .field(&HexSlice(self.bytes))
            .finish()
    }
}

#[allow(unused)] // TODO support more features
enum Opcode {
    /// Read the 8-bit legacy device ID.
    ReadDeviceId = 0xAB,
    /// Read the 8-bit manufacturer and device IDs.
    ReadMfDId = 0x90,
    /// Read 16-bit manufacturer ID and 8-bit device ID.
    ReadJedecId = 0x9F,
    /// Set the write enable latch.
    WriteEnable = 0x06,
    /// Clear the write enable latch.
    WriteDisable = 0x04,
    /// Read the 8-bit status register.
    ReadStatus = 0x05,
    /// Write the 8-bit status register. Not all bits are writeable.
    WriteStatus = 0x01,
    Read = 0x03,
    PageProg = 0x02, // directly writes to EEPROMs too
    SectorErase = 0x20,
    BlockErase = 0xD8,
    ChipErase = 0xC7,
}

bitflags! {
    /// Status register bits.
    pub struct Status: u8 {
        /// Erase or write in progress.
        const BUSY = 1 << 0;
        /// Status of the **W**rite **E**nable **L**atch.
        const WEL = 1 << 1;
        /// The 3 protection region bits.
        const PROT = 0b00011100;
        /// **S**tatus **R**egister **W**rite **D**isable bit.
        const SRWD = 1 << 7;
    }
}

/// Driver for 25-series SPI Flash chips.
///
/// # Type Parameters
///
/// * **`SPI`**: The SPI master to which the flash chip is attached.
/// * **`CS`**: The **C**hip-**S**elect line attached to the `\CS`/`\CE` pin of
///   the flash chip.
#[derive(Debug)]
pub struct Flash<SPI: Transfer<u8>, CS: OutputPin> {
    spi: SPI,
    cs: CS,
}

impl<SPI: Transfer<u8>, CS: OutputPin> Flash<SPI, CS> {
    /// Creates a new 25-series flash driver.
    ///
    /// # Parameters
    ///
    /// * **`spi`**: An SPI master. Must be configured to operate in the correct
    ///   mode for the device.
    /// * **`cs`**: The **C**hip-**S**elect Pin connected to the `\CS`/`\CE` pin
    ///   of the flash chip. Will be driven low when accessing the device.
    pub fn init(spi: SPI, cs: CS) -> Result<Self, Error<SPI, CS>> {
        let mut this = Self { spi, cs };
        let status = this.read_status()?;
        info!("Flash::init: status = {:?}", status);

        // Here we don't expect any writes to be in progress, and the latch must
        // also be deasserted.
        if !(status & (Status::BUSY | Status::WEL)).is_empty() {
            return Err(Error::UnexpectedStatus);
        }

        Ok(this)
    }

    fn command(&mut self, bytes: &mut [u8]) -> Result<(), Error<SPI, CS>> {
        // If the SPI transfer fails, make sure to disable CS anyways
        self.cs.set_low().map_err(Error::Gpio)?;
        let spi_result = self.spi.transfer(bytes).map_err(Error::Spi);
        self.cs.set_high().map_err(Error::Gpio)?;
        spi_result?;
        Ok(())
    }

    /// Reads the JEDEC manufacturer/device identification.
    pub fn read_jedec_id(&mut self) -> Result<Identification, Error<SPI, CS>> {
        // Optimistically read 12 bytes, even though some identifiers will be shorter
        let mut buf: [u8; 12] = [0; 12];
        buf[0] = Opcode::ReadJedecId as u8;
        self.command(&mut buf)?;

        // Skip buf[0] (SPI read response byte)
        Ok(Identification::from_jedec_id(&buf[1..]))
    }

    /// Reads the status register.
    pub fn read_status(&mut self) -> Result<Status, Error<SPI, CS>> {
        let mut buf = [Opcode::ReadStatus as u8, 0];
        self.command(&mut buf)?;

        Ok(Status::from_bits_truncate(buf[1]))
    }

    fn write_enable(&mut self) -> Result<(), Error<SPI, CS>> {
        let mut cmd_buf = [Opcode::WriteEnable as u8];
        self.command(&mut cmd_buf)?;
        Ok(())
    }

    fn wait_done(&mut self) -> Result<(), Error<SPI, CS>> {
        // TODO: Consider changing this to a delay based pattern
        while self.read_status()?.contains(Status::BUSY) {}
        Ok(())
    }
}

impl<SPI: Transfer<u8>, CS: OutputPin> Read<u32, SPI, CS> for Flash<SPI, CS> {
    /// Reads flash contents into `buf`, starting at `addr`.
    ///
    /// Note that `addr` is not fully decoded: Flash chips will typically only
    /// look at the lowest `N` bits needed to encode their size, which means
    /// that the contents are "mirrored" to addresses that are a multiple of the
    /// flash size. Only 24 bits of `addr` are transferred to the device in any
    /// case, limiting the maximum size of 25-series SPI flash chips to 16 MiB.
    ///
    /// # Parameters
    ///
    /// * `addr`: 24-bit address to start reading at.
    /// * `buf`: Destination buffer to fill.
    fn read(&mut self, addr: u32, buf: &mut [u8]) -> Result<(), Error<SPI, CS>> {
        // TODO what happens if `buf` is empty?

        let mut cmd_buf = [
            Opcode::Read as u8,
            (addr >> 16) as u8,
            (addr >> 8) as u8,
            addr as u8,
        ];

        self.cs.set_low().map_err(Error::Gpio)?;
        let mut spi_result = self.spi.transfer(&mut cmd_buf);
        if spi_result.is_ok() {
            spi_result = self.spi.transfer(buf);
        }
        self.cs.set_high().map_err(Error::Gpio)?;
        spi_result.map(|_| ()).map_err(Error::Spi)
    }
}

impl<SPI: Transfer<u8>, CS: OutputPin> BlockDevice<u32, SPI, CS> for Flash<SPI, CS> {
    fn erase_sectors(&mut self, addr: u32, amount: usize) -> Result<(), Error<SPI, CS>> {
        for c in 0..amount {
            self.write_enable()?;

            let current_addr: u32 = (addr as usize + c * 256).try_into().unwrap();
            let mut cmd_buf = [
                Opcode::SectorErase as u8,
                (current_addr >> 16) as u8,
                (current_addr >> 8) as u8,
                current_addr as u8,
            ];
            self.command(&mut cmd_buf)?;
            self.wait_done()?;
        }

        Ok(())
    }

    fn write_bytes(&mut self, addr: u32, data: &mut [u8]) -> Result<(), Error<SPI, CS>> {
        for (c, chunk) in data.chunks_mut(256).enumerate() {
            self.write_enable()?;

            let current_addr: u32 = (addr as usize + c * 256).try_into().unwrap();
            let mut cmd_buf = [
                Opcode::PageProg as u8,
                (current_addr >> 16) as u8,
                (current_addr >> 8) as u8,
                current_addr as u8,
            ];

            self.cs.set_low().map_err(Error::Gpio)?;
            let mut spi_result = self.spi.transfer(&mut cmd_buf);
            if spi_result.is_ok() {
                spi_result = self.spi.transfer(chunk);
            }
            self.cs.set_high().map_err(Error::Gpio)?;
            spi_result.map(|_| ()).map_err(Error::Spi)?;
            self.wait_done()?;
        }
        Ok(())
    }

    fn erase_all(&mut self) -> Result<(), Error<SPI, CS>> {
        self.write_enable()?;
        let mut cmd_buf = [Opcode::ChipErase as u8];
        self.command(&mut cmd_buf)?;
        self.wait_done()?;
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_decode_jedec_id() {
        let cypress_id_bytes = [0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0xC2, 0x22, 0x08];
        let ident = Identification::from_jedec_id(&cypress_id_bytes);
        assert_eq!(0xC2, ident.mfr_code());
        assert_eq!(6, ident.continuation_count());
        let device_id = ident.device_id();
        assert_eq!(device_id[0], 0x22);
        assert_eq!(device_id[1], 0x08);
    }
}