1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
// Copyright 2020, 2021 Adam Greig
// Licensed under the Apache-2.0 and MIT licenses.

//! spi-flash
//!
//! This crate provides an interface for common SPI flash memories,
//! including discovering ID and parameters, reading, and writing.

use std::convert::TryInto;
use std::time::{Duration, Instant};
use indicatif::{ProgressBar, ProgressStyle};

pub mod sfdp;
pub mod sreg;
pub mod id;
pub mod erase_plan;

pub use sfdp::{FlashParams, SFDPAddressBytes, SFDPEraseInst, SFDPStatus1Volatility, SFDPTiming};
pub use sreg::{StatusRegister1, StatusRegister2, StatusRegister3};
pub use id::FlashID;

use sfdp::SFDPHeader;
use erase_plan::ErasePlan;

#[derive(thiserror::Error, Debug)]
pub enum Error {
    #[error("Mismatch during flash readback verification.")]
    ReadbackError { address: u32, wrote: u8, read: u8 },
    #[error("Invalid manufacturer ID detected.")]
    InvalidManufacturer,
    #[error("Invalid SFDP header.")]
    InvalidSFDPHeader,
    #[error("Invalid parameter in SFDP parameter table.")]
    InvalidSFDPParams,
    #[error("Address out of range for memory: 0x{address:08X}.")]
    InvalidAddress { address: u32 },
    #[error("No supported reset instruction is available.")]
    NoResetInstruction,
    #[error("No erase instruction has been specified.")]
    NoEraseInstruction,

    #[error(transparent)]
    Access(#[from] anyhow::Error),
}

pub type Result<T> = std::result::Result<T, Error>;

/// Trait for objects which provide access to SPI flash.
///
/// Providers only need to implement `exchange()`, which asserts CS, writes all the bytes
/// in `data`, then returns all the received bytes. If it provides a performance optimisation,
/// providers may also implement `write()`, which does not require the received data.
pub trait FlashAccess {
    /// Assert CS, write all bytes in `data` to the SPI bus, then de-assert CS.
    fn write(&mut self, data: &[u8]) -> anyhow::Result<()> {
        // Default implementation uses `exchange()` and ignores the result data.
        self.exchange(data)?;
        Ok(())
    }

    /// Assert CS, write all bytes in `data` while capturing received data, then de-assert CS.
    ///
    /// Returns the received data.
    fn exchange(&mut self, data: &[u8]) -> anyhow::Result<Vec<u8>>;
}

/// SPI Flash.
///
/// This struct provides methods for interacting with common SPI flashes.
pub struct Flash<'a, A: FlashAccess> {
    access: &'a mut A,

    /// Once read, ID details are cached.
    id: Option<FlashID>,

    /// Once read, SFDP parameters are cached.
    params: Option<FlashParams>,

    /// Number of address bytes to use when reading and writing.
    /// This is set to 3 by default for compatibility, but may
    /// be set to 2 for legacy memories or 4 for high-density memories.
    address_bytes: u8,

    /// Total data memory capacity in bytes, up to 4GB.
    capacity: Option<usize>,

    /// Page size in bytes, used for programming operations.
    page_size: Option<usize>,

    /// Sector size in bytes, used for the smallest erase operations.
    erase_size: Option<usize>,

    /// EraseSector instruction opcode.
    /// This is set to 0x20 by default but may be overridden.
    erase_opcode: u8,
}

impl<'a, A: FlashAccess> Flash<'a, A> {

    const DATA_PROGRESS_TPL: &'static str =
        " {msg} [{bar:40}] {bytes}/{total_bytes} ({bytes_per_sec}; {eta_precise})";
    const DATA_PROGRESS_CHARS: &'static str = "=> ";

    /// Create a new Flash instance using the given FlashAccess provider.
    pub fn new(access: &'a mut A) -> Self {
        Flash {
            access,
            id: None,
            params: None,
            address_bytes: 3,
            capacity: None,
            page_size: None,
            erase_size: None,
            erase_opcode: 0x20,
        }
    }

    /// Get the number of address bytes which will be used in read and write commands.
    pub fn address_bytes(&self) -> u8 {
        self.address_bytes
    }

    /// Set the number of address bytes to use with read and write commands.
    /// By default this is set to 3, and can also be autodiscovered using SFDP.
    ///
    /// Panics if `n` is less than 1 or greater than 4.
    pub fn set_address_bytes(&mut self, n: u8) {
        assert!(n >= 1, "set_address_bytes: n must be at least 1");
        assert!(n <= 4, "set_address_bytes: n must not exceed 4");
        self.address_bytes = n;
    }

    /// Get the total memory capacity in bytes, if known.
    pub fn capacity(&self) -> Option<usize> {
        self.capacity
    }

    /// Set the total memory capacity in bytes.
    ///
    /// If set, or discovered using SFDP, reads and writes are prevented
    /// from going beyond the memory capacity.
    pub fn set_capacity(&mut self, n: usize) {
        self.capacity = Some(n);
    }

    /// Get the page program size in bytes.
    pub fn page_size(&self) -> Option<usize> {
        self.page_size
    }

    /// Set the page program size in bytes.
    ///
    /// This must be known before page program operations can be performed.
    pub fn set_page_size(&mut self, n: usize) {
        self.page_size = Some(n);
    }

    /// Get the sector erase size in bytes, if known.
    pub fn erase_size(&self) -> Option<usize> {
        self.erase_size
    }

    /// Set the sector erase size in bytes.
    ///
    /// This must be known before sector erase operations can be performed.
    pub fn set_erase_size(&mut self, n: usize) {
        self.erase_size = Some(n);
    }

    /// Get the opcode used for the Erase Sector instruction.
    pub fn erase_opcode(&self) -> u8 {
        self.erase_opcode
    }

    /// Set the opcode used for the Erase Sector instruction.
    ///
    /// This is 0x20 by default.
    pub fn set_erase_opcode(&mut self, opcode: u8) {
        self.erase_opcode = opcode;
    }

    /// Get the flash ID, if it has already been read.
    ///
    /// Call `read_id()` to read the ID from the flash.
    pub fn get_id(&self) -> Option<FlashID> {
        self.id
    }

    /// Get the flash parameters, if they have already been read.
    ///
    /// Call `read_params()` to read the params from the flash.
    pub fn get_params(&self) -> Option<FlashParams> {
        self.params
    }

    /// Read the device's manufacturer ID and device IDs.
    ///
    /// This method additionally brings the flash out of powerdown and resets it.
    ///
    /// `self.id` is updated with the new ID; use `get_id()` to
    /// retrieve it without re-reading the ID from the flash.
    pub fn read_id(&mut self) -> Result<FlashID> {
        log::debug!("Reading SPI Flash ID");

        let legacy_id = self.release_power_down()?;
        self.reset()?;

        let (bank_long, mfn_id_long, device_id_long) = self.read_jedec_id()?;
        let (bank_short, mfn_id_short, mut device_id_short) = self.read_device_id()?;
        let unique_id = self.read_unique_id()?;

        // The device may implement any or none of the three identification
        // instructions; attempt to obtain a valid manufacturer ID and device ID.
        // If there is no device present or a communication error, we'll probably
        // receive all-0s or all-1s for all the data.
        let manufacturer_bank;
        let manufacturer_id;
        if mfn_id_long != 0x00 && mfn_id_long != 0xFF {
            manufacturer_bank = bank_long;
            manufacturer_id = mfn_id_long;
        } else if mfn_id_short != 0x00 && mfn_id_short != 0xFF {
            manufacturer_bank = bank_short;
            manufacturer_id = mfn_id_short;
        } else {
            log::warn!("No valid manufacturer ID found");
            if legacy_id == 0x00 || legacy_id == 0xFF {
                log::error!("No device or manufacturer ID found");
                return Err(Error::InvalidManufacturer);
            } else {
                device_id_short = legacy_id;
                manufacturer_bank = 0;
                manufacturer_id = 0;
            }
        }

        let id = FlashID {
            manufacturer_bank, manufacturer_id, device_id_short, device_id_long, unique_id
        };

        log::debug!("Read ID: {:?}", id);
        self.id = Some(id);
        Ok(id)
    }

    /// Read SFDP JEDEC Basic Flash Parameter table from flash.
    ///
    /// Access errors are returned as usual, but if SFDP is not supported
    /// (no SFDP signature is detected in the first SFDP DWORD) then
    /// `Ok(None)` is returned instead.
    ///
    /// Depending on the version of SFDP supported, some fields may
    /// not be available.
    ///
    /// Once read, the parameters are available using `get_params()`,
    /// and the parameter values are automatically used for the
    /// configuration of address bytes, capacity, page size, sector size,
    /// and erase sector opcode. Additionally, larger erase commands
    /// described by the SFDP parameters will be used when appropriate.
    pub fn read_params(&mut self) -> Result<Option<FlashParams>> {
        log::debug!("Reading SFDP data");

        // Read just SFDP header to get NPH first.
        let data = self.read_sfdp(0, 8)?;
        let nph = data[6] as usize + 1;

        // Re-read overall SFDP header including parameter headers.
        // Handle errors parsing the header by returning Ok(None),
        // since not all flash devices support SFDP.
        // After this parse is successful, however, subsequent errors
        // are returned as errors.
        let data = self.read_sfdp(0, 8 + nph*8)?;
        let header = match SFDPHeader::from_bytes(&data) {
            Ok(header) => header,
            Err(_) => return Ok(None),
        };

        // Check the first parameter header is the JEDEC basic flash parameters,
        // as required by JESD216.
        let params = header.params[0];
        if params.parameter_id != 0xFF00 || params.major != 0x01 {
            log::error!("Unexpected first SFDP parameter header: expected 0xFF00 version 1.");
            return Err(Error::InvalidSFDPHeader);
        }

        // Read SFDP table data and parse into a FlashParams struct.
        let data = self.read_sfdp(params.ptp, params.plen * 4)?;
        let params = FlashParams::from_bytes(params.major, params.minor, &data)?;
        self.params = Some(params);

        // Use params to update settings where posssible.
        self.address_bytes = match params.address_bytes {
            SFDPAddressBytes::Three => 3,
            SFDPAddressBytes::ThreeOrFour => 3,
            SFDPAddressBytes::Four => 4,
            _ => 3,
        };
        self.capacity = Some(params.capacity_bytes());
        if let Some(page_size) = params.page_size {
            self.page_size = Some(page_size as usize);
        }
        if let Some((size, opcode)) = params.sector_erase() {
            self.erase_size = Some(size);
            self.erase_opcode = opcode;
        } else if params.legacy_4kb_erase_supported && params.legacy_4kb_erase_inst != 0xFF {
            self.erase_size = Some(4096);
            self.erase_opcode = params.legacy_4kb_erase_inst;
        }
        log::debug!("Updated settings from parameters:");
        log::debug!("Address bytes: {}, capacity: {:?} bytes",
                    self.address_bytes, self.capacity);
        log::debug!("Page size: {:?}, erase size: {:?}, erase op: {}",
                    self.page_size, self.erase_size, self.erase_opcode);

        Ok(Some(params))
    }

    /// Read `length` bytes of data from the attached flash, starting at `address`.
    ///
    /// This method uses the FastRead instruction; if it is not supported
    /// try using `legacy_read()` instead.
    pub fn read(&mut self, address: u32, length: usize) -> Result<Vec<u8>> {
        self.check_address_length(address, length)?;
        let mut param = self.make_address(address);
        // Dummy byte after address.
        param.push(0);
        self.exchange(Command::FastRead, &param, length)
    }

    /// Read `length` bytes of data from the attached flash, starting at `address`.
    ///
    /// This method uses the legacy ReadData instruction, which often has a low
    /// maximum clock speed compared to other operations, but is more widely supported
    /// and may be faster for very short reads as it does not require a dummy byte.
    pub fn legacy_read(&mut self, address: u32, length: usize) -> Result<Vec<u8>> {
        self.check_address_length(address, length)?;
        let param = self.make_address(address);
        self.exchange(Command::ReadData, &param, length)
    }

    /// Read `length` bytes of data from the attached flash, starting at `address`.
    ///
    /// This method is similar to the `read()` method, except it calls the provided
    /// callback function at regular intervals with the number of bytes read so far.
    ///
    /// While `read()` performs a single long SPI exchange, this method performs
    /// up to 128 separate SPI exchanges to allow progress to be reported.
    pub fn read_cb<F: Fn(usize)>(&mut self, address: u32, length: usize, cb: F)
        -> Result<Vec<u8>>
    {
        self.check_address_length(address, length)?;
        let chunk_size = usize::max(1024, length / 128);
        let start = address as usize;
        let end = start + length;
        let mut data = Vec::new();
        cb(0);
        for addr in (start..end).step_by(chunk_size) {
            let size = usize::min(chunk_size, end - addr);
            let mut param = self.make_address(addr as u32);
            param.push(0);
            data.append(&mut self.exchange(Command::FastRead, &param, size)?);
            cb(data.len());
        }
        cb(data.len());
        Ok(data)
    }

    /// Read `length` bytes of data from the attached flash, starting at `address`.
    ///
    /// This method is similar to the `read()` method, except it renders a progress
    /// bar to the terminal during the read.
    ///
    /// While `read()` performs a single long SPI exchange, this method performs
    /// up to 128 separate SPI exchanges to allow progress to be reported.
    pub fn read_progress(&mut self, address: u32, length: usize) -> Result<Vec<u8>> {
        let pb = ProgressBar::new(length as u64).with_style(ProgressStyle::default_bar()
            .template(Self::DATA_PROGRESS_TPL).progress_chars(Self::DATA_PROGRESS_CHARS));
        pb.set_message("Reading");
        let result = self.read_cb(address, length, |n| pb.set_position(n as u64));
        pb.finish();
        result
    }

    /// Erase entire flash chip.
    ///
    /// This method uses the ChipErase instruction, so no progress information
    /// is available, but the typical and maximum times taken may be available
    /// from the SFDP parameters.
    ///
    /// Returns only after erase operation is complete.
    pub fn erase(&mut self) -> Result<()> {
        self.write_enable()?;
        self.command(Command::ChipErase)?;
        self.wait_while_busy()?;
        Ok(())
    }

    /// Erase entire flash chip.
    ///
    /// This method is identical to `erase()`, except it draws a progress bar
    /// to the terminal during the erase operation.
    ///
    /// If SFDP data indicates a typical chip erase time, that value is used,
    /// otherwise the progress bar is drawn as a spinner.
    pub fn erase_progress(&mut self) -> Result<()> {
        let time = self.params.map(|p| p.timing.map(|t| t.chip_erase_time_typ));
        let pb = if let Some(Some(time)) = time {
            ProgressBar::new(time.as_millis() as u64).with_style(ProgressStyle::default_bar()
            .template(" {msg} [{bar:40}] {elapsed} < {eta}")
            .progress_chars("=> "))
        } else {
            ProgressBar::new_spinner()
        };
        pb.set_message("Erasing");
        let t0 = Instant::now();
        self.write_enable()?;
        self.command(Command::ChipErase)?;
        while self.is_busy()? {
            let t = t0.elapsed().as_millis() as u64;
            pb.set_position(t);
        }
        pb.finish();
        Ok(())
    }

    /// Program the attached flash with `data` starting at `address`.
    ///
    /// Sectors and blocks are erased as required for the new data,
    /// and existing data outside the new data to write is written
    /// back if it has to be erased.
    ///
    /// If `verify` is true, the programmed data is read back, and
    /// a ReadbackError will be returned if it did not match what was written.
    ///
    /// When available, SFDP parameters are used to generate an efficient
    /// sequence of erase instructions. If unavailable, the single erase
    /// instruction in `erase_opcode` is used, and its size of effect
    /// must be given in `erase_size`. If these are not set, a
    /// `NoEraseInstruction` is returned.
    ///
    /// The programming page size is set by `page_size`, which is
    /// automatically set when SFDP parameters are read.
    pub fn program(&mut self, address: u32, data: &[u8], verify: bool) -> Result<()> {
        self.check_address_length(address, data.len())?;

        // Work out a good erasure plan.
        let erase_plan = self.make_erase_plan(address, data.len())?;

        // Read data which will be inadvertently erased so we can restore it.
        let full_data = self.make_restore_data(address, data, &erase_plan)?;

        // Execute erasure plan.
        self.run_erase_plan(&erase_plan, |_| {})?;

        // Write new data.
        let start_addr = erase_plan.0[0].2;
        self.program_data(start_addr, &full_data)?;

        // Optionally do a readback to verify all written data.
        if verify {
            let programmed = self.read(start_addr, full_data.len())?;
            self.verify_readback(start_addr, &full_data, &programmed)?;
        }

        Ok(())
    }

    /// Program the attached flash with `data` starting at `address`.
    ///
    /// This is identical to `program()`, except it also draws progress bars to the terminal.
    pub fn program_progress(&mut self, address: u32, data: &[u8], verify: bool) -> Result<()> {
        self.check_address_length(address, data.len())?;

        // Work out a good erasure plan.
        let erase_plan = self.make_erase_plan(address, data.len())?;

        // Read data which will be inadvertently erased so we can restore it.
        let full_data = self.make_restore_data(address, data, &erase_plan)?;

        // Execute erasure plan.
        self.run_erase_plan_progress(&erase_plan)?;

        // Write new data.
        let start_addr = erase_plan.0[0].2;
        self.program_data_progress(start_addr, &full_data)?;

        // Optionally do a readback to verify all written data.
        if verify {
            let programmed = self.read_progress(start_addr, full_data.len())?;
            self.verify_readback(start_addr, &full_data, &programmed)?;
        }

        Ok(())
    }

    /// Reset the attached flash.
    ///
    /// The instruction sequence EnableReset 0x66 followed by Reset 0x99
    /// is sent by default, but if the SFDP parameters indicate that only
    /// the 0xF0 instruction is supported for reset, that is sent instead.
    pub fn reset(&mut self) -> Result<()> {
        let mut do_f0 = false;
        let mut do_66_99 = true;

        if let Some(params) = self.params {
            if let Some(op_66_99) = params.reset_inst_66_99 {
                do_66_99 = op_66_99;
            }
            if let Some(op_f0) = params.reset_inst_f0 {
                do_f0 = op_f0;
            }
        }

        if do_66_99 {
            self.command(Command::EnableReset)?;
            self.command(Command::Reset)
        } else if do_f0 {
            self.command(0xF0)
        } else {
            log::error!("No reset instruction available.");
            Err(Error::NoResetInstruction)
        }
    }

    /// Check if any block protect bits are set in status register 1.
    pub fn is_protected(&mut self) -> Result<bool> {
        log::debug!("Checking if BP bits are set");
        let status1 = self.read_status1()?;
        let (bp0, bp1, bp2) = status1.get_block_protect();
        log::debug!("BP0: {}, BP1: {}, BP2: {}", bp0, bp1, bp2);
        Ok(bp0 || bp1 || bp2)
    }

    /// Set block protection bits.
    ///
    /// This sets the block protect bits in status register 1,
    /// using the non-volatile commands if supported. If available,
    /// the SFDP parameters are used to determine the correct
    /// non-volatile instruction.
    pub fn protect(&mut self, bp0: bool, bp1: bool, bp2: bool) -> Result<()> {
        log::debug!("Setting block protection bits to BP0={}, BP1={}, BP2={}", bp0, bp1, bp2);
        let mut status1 = self.read_status1()?;
        status1.set_block_protect(bp0, bp1, bp2);
        self.write_status1(status1)?;
        self.wait_while_busy()?;
        Ok(())
    }

    /// Clear any protection bits that are set.
    ///
    /// This checks and clears the block protect bits in status register 1,
    /// using the non-volatile commands if supported. If available, the SFDP
    /// parameters are used to determine the correct non-volatile instruction.
    pub fn unprotect(&mut self) -> Result<()> {
        log::debug!("Checking if BP bits are set before clearing them");
        let mut status1 = self.read_status1()?;
        let (bp0, bp1, bp2) = status1.get_block_protect();
        if bp0 || bp1 || bp2 {
            log::debug!("Block protect bits are currently set, clearing.");
            status1.set_block_protect(false, false, false);
            self.write_status1(status1)?;
            self.wait_while_busy()?;
        }
        Ok(())
    }

    /// Clear the write-protect-selection bit in status register 3, if set.
    ///
    /// This status bit configures the fine-granularity write protection
    /// which is a vendor-specific extension that is disabled by default.
    ///
    /// Unfortunately it is not possible to determine automatically if a
    /// flash chip supports the WPS feature or even has a status register 3,
    /// so this command is not called automatically.
    pub fn unprotect_wps(&mut self) -> Result<()> {
        let mut status3 = self.read_status3()?;
        if status3.get_wps() {
            log::debug!("WPS bit set, clearing.");
            status3.set_wps(false);
            self.write_status3(status3)?;
            self.wait_while_busy()?;
        }
        Ok(())
    }

    /// Power down the flash.
    pub fn power_down(&mut self) -> Result<()> {
        log::debug!("Sending Powerdown command");
        self.command(Command::Powerdown)
    }

    /// Power up the flash.
    ///
    /// Returns the legacy device ID.
    pub fn release_power_down(&mut self) -> Result<u8> {
        log::debug!("Sending Release Powerdown command");
        let data = self.exchange(Command::ReleasePowerdown, &[0, 0, 0], 1)?;
        Ok(data[0])
    }

    /// Program `data` to `address`, automatically split into multiple page program operations.
    ///
    /// Note that this does *not* erase the flash beforehand; use `program()` for a higher-level
    /// erase-program-verify interface.
    pub fn program_data(&mut self, address: u32, data: &[u8]) -> Result<()> {
        self.program_data_cb(address, data, |_| {})
    }

    /// Program `data` to `address`, automatically split into multiple page program operations,
    /// and draws a progress bar to the terminal.
    ///
    /// Note that this does *not* erase the flash beforehand;
    /// use `program()` for a higher-level erase-program-verify interface.
    pub fn program_data_progress(&mut self, address: u32, data: &[u8]) -> Result<()> {
        let pb = ProgressBar::new(data.len() as u64).with_style(ProgressStyle::default_bar()
            .template(Self::DATA_PROGRESS_TPL).progress_chars(Self::DATA_PROGRESS_CHARS));
        pb.set_message("Writing");
        self.program_data_cb(address, &data, |n| pb.set_position(n as u64))?;
        pb.finish();
        Ok(())
    }

    /// Program `data` to `address`, automatically split into multiple page program operations.
    ///
    /// Note that this does *not* erase the flash beforehand; use `program()` for a higher-level
    /// erase-program-verify interface.
    ///
    /// Calls `cb` with the number of bytes programmed so far after each
    /// page programming operation.
    pub fn program_data_cb<F: Fn(usize)>(&mut self, address: u32, mut data: &[u8], cb: F)
        -> Result<()>
    {
        let page_size = match self.page_size {
            Some(page_size) => page_size,
            None => {
                log::info!("Page size not known. Using a default of 256 bytes.");
                log::info!("Set a specific page size using `set_page_size()`.");
                256
            }
        };

        log::trace!("Programming data to 0x{:08X}, page size {} bytes", address, page_size);

        let mut total_bytes = 0;
        cb(total_bytes);

        // If the address is not page-aligned, we need to do a
        // smaller-than-page-size initial program.
        let first_write = page_size - ((address as usize) % page_size);
        if first_write != page_size {
            log::trace!("Programming partial first page of {} bytes", first_write);
            self.page_program(address, &data[..first_write])?;
            total_bytes += first_write;
            data = &data[first_write..];
            cb(total_bytes);
        }

        for page_data in data.chunks(page_size) {
            self.page_program(address + total_bytes as u32, page_data)?;
            total_bytes += page_data.len();
            cb(total_bytes);
        }

        Ok(())
    }

    /// Send the WriteEnable command, setting the WEL in the status register.
    pub fn write_enable(&mut self) -> Result<()> {
        self.command(Command::WriteEnable)
    }

    /// Program up to one page of data.
    ///
    /// This method sets the write-enable latch and then waits for programming to complete,
    /// including sleeping half the typical page program time if known before polling.
    ///
    /// Note that this does *not* erase the flash beforehand;
    /// use `program()` for a higher-level erase-program-verify interface.
    pub fn page_program(&mut self, address: u32, data: &[u8]) -> Result<()> {
        let mut tx = self.make_address(address);
        tx.extend(data);
        self.write_enable()?;
        self.exchange(Command::PageProgram, &tx, 0)?;
        if let Some(params) = self.params {
            if let Some(timing) = params.timing {
                // Only bother sleeping if the expected programming time is greater than 1ms,
                // otherwise we'll likely have waited long enough just due to round-trip delays.
                // We always poll the status register at least once to check write completion.
                if timing.page_prog_time_typ > Duration::from_millis(1) {
                    std::thread::sleep(timing.page_prog_time_typ / 2);
                }
            }
        }
        self.wait_while_busy()?;
        Ok(())
    }

    /// Reads the JEDEC manufacturer and long (16-bit) device IDs.
    ///
    /// The manufacturer ID may be prefixed with up to 13 of the
    /// continuation code 0x7F; the number of continuation codes
    /// is returned as the bank number.
    ///
    /// Returns (bank, manufacturer ID, device ID).
    pub fn read_jedec_id(&mut self) -> Result<(u8, u8, u16)> {
        // Attempt to read assuming a single-byte manufacturer ID.
        let data = self.exchange(Command::ReadJEDECID, &[], 3)?;
        if data[0] != 0x7F {
            Ok((0, data[0], u16::from_be_bytes([data[1], data[2]])))
        } else {
            // If the first byte is continuation, read 16 bytes, to allow
            // up to 13 continuation bytes, and then parse it to find the IDs.
            let data = self.exchange(Command::ReadJEDECID, &[], 16)?;
            for n in 1..=13 {
                if data[n] != 0x7F {
                    return Ok((n as u8, data[n], u16::from_be_bytes([data[n+1], data[n+2]])));
                }
            }
            log::error!("Found more than 11 continuation bytes in manufacturer ID");
            Err(Error::InvalidManufacturer)
        }
    }

    /// Reads the JEDEC manufacturer and short (8-bit) device IDs.
    ///
    /// The manufacturer ID may be prefixed with up to 13 of the
    /// continuation code 0x7F; the number of continuation codes
    /// is returned as the bank number.
    ///
    /// Returns (bank, manufacturer ID, device ID).
    pub fn read_device_id(&mut self) -> Result<(u8, u8, u8)> {
        // Attempt to read assuming a single-byte manufacturer ID.
        let data = self.exchange(Command::ReadDeviceID, &[0, 0, 0], 2)?;
        if data[0] != 0x7F {
            Ok((0, data[0], data[1]))
        } else {
            // If the first byte is continuation, read 15 bytes, to allow
            // up to 13 continuation bytes, and then parse it to find the IDs.
            let data = self.exchange(Command::ReadJEDECID, &[0, 0, 0], 15)?;
            for n in 1..=13 {
                if data[n] != 0x7F {
                    return Ok((n as u8, data[n], data[n+1]))
                }
            }
            log::error!("Found more than 11 continuation bytes in manufacturer ID");
            Err(Error::InvalidManufacturer)
        }
    }

    /// Read the device's 64-bit unique ID, if present.
    pub fn read_unique_id(&mut self) -> Result<u64> {
        self.exchange(Command::ReadUniqueID, &[0, 0, 0, 0], 8)
            .map(|data| u64::from_be_bytes(data.try_into().unwrap()))
    }

    /// Read status register 1.
    pub fn read_status1(&mut self) -> Result<StatusRegister1> {
        self.exchange(Command::ReadStatusRegister1, &[], 1).map(|data| StatusRegister1(data[0]))
    }

    /// Read status register 2.
    ///
    /// This status register is less widely supported and SFDP does
    /// not indicate whether or not it is present.
    pub fn read_status2(&mut self) -> Result<StatusRegister2> {
        self.exchange(Command::ReadStatusRegister2, &[], 1).map(|data| StatusRegister2(data[0]))
    }

    /// Read status register 3.
    ///
    /// This status register is less widely supported and SFDP does
    /// not indicate whether or not it is present.
    pub fn read_status3(&mut self) -> Result<StatusRegister3> {
        self.exchange(Command::ReadStatusRegister3, &[], 1).map(|data| StatusRegister3(data[0]))
    }

    /// Write status register 1.
    ///
    /// This method does *not* require you call `write_enable()` first.
    ///
    /// If the SFDP parameters indicate a specific command should be used
    /// to enable writing to status register 1, that is used, otherwise the
    /// default WriteEnable of 0x06 is used.
    fn write_status1(&mut self, status1: StatusRegister1) -> Result<()> {
        let we_opcode = if let Some(params) = self.params {
            match params.status_1_vol {
                Some(SFDPStatus1Volatility::NonVolatile06) => 0x06,
                Some(SFDPStatus1Volatility::Volatile06) => 0x06,
                Some(SFDPStatus1Volatility::Volatile50) => 0x50,
                Some(SFDPStatus1Volatility::NonVolatile06Volatile50) => 0x06,
                Some(SFDPStatus1Volatility::Mixed06) => 0x06,
                _ => if params.legacy_block_protect_volatile {
                    params.legacy_volatile_write_en_inst
                } else {
                    Command::WriteEnable.into()
                }
            }
        } else {
            Command::WriteEnable.into()
        };
        self.command(we_opcode)?;
        let s1 = self.read_status1()?;
        log::debug!("Set WEL, s1 now: {:02X}", s1.0);
        self.write(Command::WriteStatusRegister1, &[status1.0])
    }

    /// Write status register 2.
    pub fn write_status2(&mut self, status2: StatusRegister2) -> Result<()> {
        self.write_enable()?;
        self.write(Command::WriteStatusRegister2, &[status2.0])
    }

    /// Write status register 3.
    pub fn write_status3(&mut self, status3: StatusRegister3) -> Result<()> {
        self.write_enable()?;
        self.write(Command::WriteStatusRegister3, &[status3.0])
    }

    /// Check if the device is currently busy performing an operation.
    ///
    /// If the flash parameters indicate support for the Flag Status Register
    /// instruction (0x70), it is used, otherwise legacy polling of status
    /// register 1 is used.
    pub fn is_busy(&mut self) -> Result<bool> {
        // If we have read parameters and flag status polling is supported, use that.
        // Bit 7 of FSR is 0=busy and 1=ready.
        if let Some(params) = self.params {
            if let Some(busy_poll_flag) = params.busy_poll_flag {
                if busy_poll_flag {
                    let fsr = self.exchange(Command::ReadFlagStatusRegister, &[], 1)?[0];
                    return Ok(fsr & 0b1000_0000 == 0);
                }
            }
        }

        // Otherwise and by default, poll status register 1 instead.
        self.read_status1().map(|status| status.get_busy())
    }

    /// Wait until the device stops being busy.
    ///
    /// This polls using `is_busy()`, which uses the flag status
    /// register if available or otherwise uses status register 1.
    pub fn wait_while_busy(&mut self) -> Result<()> {
        while self.is_busy()? {}
        Ok(())
    }

    /// Read SFDP register data.
    ///
    /// `addr` is always sent as a 24-bit address, regardless of the address_bytes setting.
    pub fn read_sfdp(&mut self, addr: u32, len: usize) -> Result<Vec<u8>> {
        let bytes = addr.to_be_bytes();
        self.exchange(Command::ReadSFDPRegister, &bytes[1..], 1+len)
            .map(|data| data[1..].to_vec())
    }

    /// Writes `command` and `data` to the flash memory, then returns `nbytes` of response.
    pub fn exchange<C: Into<u8>>(&mut self, command: C, data: &[u8], nbytes: usize)
        -> Result<Vec<u8>>
    {
        let mut tx = vec![command.into()];
        tx.extend(data);
        log::trace!("SPI exchange: write {:02X?}, read {} bytes", &tx, nbytes);
        tx.extend(vec![0u8; nbytes]);
        let rx = self.access.exchange(&tx)?;
        log::trace!("SPI exchange: read {:02X?}", &rx[1+data.len()..]);
        Ok(rx[1+data.len()..].to_vec())
    }

    /// Writes `command` and `data` to the flash memory, without reading the response.
    pub fn write<C: Into<u8>>(&mut self, command: C, data: &[u8]) -> Result<()> {
        let mut tx = vec![command.into()];
        tx.extend(data);
        log::trace!("SPI write: {:02X?}", &tx);
        self.access.write(&tx)?;
        Ok(())
    }

    /// Convenience method for issuing a single command and not caring about the returned data
    pub fn command<C: Into<u8>>(&mut self, command: C) -> Result<()> {
        self.write(command, &[])?;
        Ok(())
    }

    /// Checks if `address` and `length` together are permissible:
    /// * `address` must not exceed the current number of address bytes
    /// * Both `address` and `address+length` must be within the flash memory bounds,
    ///   if the capacity is known.
    /// Returns either Err(Error::InvalidAddress) or Ok(()).
    fn check_address_length(&self, address: u32, length: usize) -> Result<()> {
        log::trace!("Checking address={:08X} length={}", address, length);
        let start = address as usize;
        let end = (address as usize) + length - 1;
        let max_addr = 1 << (self.address_bytes * 8);

        if (end & (max_addr - 1)) < start {
            log::error!("Operation would wrap");
            Err(Error::InvalidAddress { address: end as u32 })
        } else if end > max_addr {
            log::error!("Operation would exceed largest address");
            Err(Error::InvalidAddress { address: end as u32 })
        } else {
            match self.capacity {
                Some(capacity) if (end >= capacity) => {
                    log::error!("Operation would exceed flash capacity");
                    Err(Error::InvalidAddress { address: end as u32 })
                },
                _ => Ok(()),
            }
        }
    }

    /// Generate a 1-, 2-, 3-, or 4-byte address, depending on current `address_bytes` setting.
    ///
    /// Panics if address_bytes is not 1-, 2, 3, or 4.
    fn make_address(&self, addr: u32) -> Vec<u8> {
        let bytes = addr.to_be_bytes();
        bytes[(4 - self.address_bytes as usize)..].to_vec()
    }

    /// Work out what combination of erase operations to run to efficiently
    /// erase the specified memory.
    fn make_erase_plan(&self, address: u32, length: usize) -> Result<ErasePlan> {
        log::debug!("Creating erase plan for address={} length={}", address, length);
        // Erase instructions: (size in bytes, opcode).
        let mut insts = Vec::new();

        // Find available erase instructions.
        if let Some(params) = self.params {
            if params.erase_insts.iter().any(|&inst| inst.is_some()) {
                log::trace!("Using SFDP erase instructions.");
                for inst in params.erase_insts.iter() {
                    if let Some(inst) = inst {
                        insts.push((inst.size as usize, inst.opcode, inst.time_typ));
                    }
                }
            } else if params.legacy_4kb_erase_supported {
                log::trace!("No erase instructions in SFDP, using legacy 4kB erase.");
                insts.push((4096, params.legacy_4kb_erase_inst, None));
            } else {
                log::trace!("SFDP indicates no erase instructions available.");
            }
        }
        if insts.is_empty() {
            if let Some(erase_size) = self.erase_size {
                log::trace!("No SFDP erase instructions found, using `erase_size` parameter.");
                insts.push((erase_size, self.erase_opcode, None));
            } else {
                log::warn!("No erase instructions could be found.");
                log::warn!("Try setting one manually using `Flash::set_erase_size()`.");
                return Err(Error::NoEraseInstruction);
            }
        }
        insts.sort();

        // Create plan given the list of available erase instructions.
        Ok(ErasePlan::new(&insts, address as usize, length))
    }

    /// Read all the bytes before `address` in memory which will be erased by `plan`.
    fn read_erase_preamble(&mut self, address: u32, plan: &ErasePlan) -> Result<Vec<u8>> {
        let base = plan.0[0].2;
        let len = address - base;
        if len > 0 {
            log::debug!("Reading erase preamble: base={} len={}", base, len);
            self.read(base, len as usize)
        } else {
            Ok(Vec::new())
        }
    }

    /// Read all the bytes after `address + length` in memory which will be erased by `plan`.
    ///
    /// If all those bytes are 0xFF, returns an empty Vec instead, as they won't be changed
    /// by the erase operation.
    fn read_erase_postamble(&mut self, address: u32, length: usize, plan: &ErasePlan)
        -> Result<Vec<u8>>
    {
        let (_, size, base, _) = plan.0.last().unwrap();
        let start = address + (length as u32);
        let len = (*base as usize + *size) - start as usize;
        if len > 0 {
            log::debug!("Reading erase postamble: addr={} len={}", start, len);
            let data = self.read(start, len)?;
            // If all the postamble is already 0xFF, there's no point reprogramming it.
            if data.iter().all(|x| *x == 0xFF) {
                Ok(Vec::new())
            } else {
                Ok(data)
            }
        } else {
            Ok(Vec::new())
        }
    }

    /// Extend `data` by adding any preamble and postamble required to preserve
    /// existing data after erasing and reprogramming.
    fn make_restore_data(&mut self, address: u32, data: &[u8], erase_plan: &ErasePlan)
        -> Result<Vec<u8>>
    {
        let preamble = self.read_erase_preamble(address, &erase_plan)?;
        let postamble = self.read_erase_postamble(address, data.len(), &erase_plan)?;
        let mut full_data = preamble;
        full_data.extend(data);
        full_data.extend(&postamble);
        Ok(full_data)
    }

    /// Execute the sequence of erase operations from `plan`.
    ///
    /// `cb` is called with the number of bytes erased so far.
    fn run_erase_plan<F: Fn(usize)>(&mut self, plan: &ErasePlan, cb: F) -> Result<()> {
        let mut total_erased = 0;
        cb(total_erased);
        for (opcode, size, base, duration) in plan.0.iter() {
            log::trace!("Executing erase plan: Erase 0x{:02X} ({} bytes) from 0x{:08X}",
                        opcode, size, base);
            let addr = self.make_address(*base);
            self.write_enable()?;
            self.write(*opcode, &addr)?;
            if let Some(duration) = duration {
                std::thread::sleep(*duration / 2);
            }
            self.wait_while_busy()?;
            total_erased += size;
            cb(total_erased);
        }
        cb(total_erased);
        Ok(())
    }

    /// Execute the sequence of erase operations from `plan`, and draw a progress bar
    /// to the terminal.
    fn run_erase_plan_progress(&mut self, plan: &ErasePlan) -> Result<()> {
        let erase_size = plan.total_size() as u64;
        let pb = ProgressBar::new(erase_size).with_style(ProgressStyle::default_bar()
            .template(Self::DATA_PROGRESS_TPL).progress_chars(Self::DATA_PROGRESS_CHARS));
        pb.set_message("Erasing");
        self.run_erase_plan(&plan, |n| pb.set_position(n as u64))?;
        pb.finish();
        Ok(())
    }

    /// Verify programmed data matches new flash contents.
    ///
    /// Returns Err::ReadbackError on mismatch.
    fn verify_readback(&mut self, address: u32, data: &[u8], new_data: &[u8]) -> Result<()> {
        let mismatch = data.iter().zip(new_data).enumerate().find(|(_, (a, b))| a != b);
        match mismatch {
            Some((idx, (a, b))) => {
                let addr = address + idx as u32;
                log::error!("Readback mismatch at 0x{:08X}: Wrote 0x{:02X}, read 0x{:02X}",
                            addr, a, b);
                if self.is_protected()? {
                    log::error!("Flash write protection appears to be enabled, try unprotecting.");
                }
                Err(Error::ReadbackError { address: addr, wrote: *a, read: *b })
            },
            None => Ok(()),
        }
    }
}

/// Standard SPI flash command opcodes.
///
/// These are taken from the Winbond W25Q16JV datasheet, but most are
/// widely applicable. If SFDP is supported, it is used to discover
/// the relevant erase opcodes and sizes.
///
/// Only single I/O commands are listed.
#[derive(Copy, Clone, Debug, num_enum::IntoPrimitive)]
#[allow(unused)]
#[repr(u8)]
enum Command {
    // Core instruction set.
    // These commands are almost universally available.
    WriteEnable = 0x06,
    WriteDisable = 0x04,
    ReadData = 0x03,
    PageProgram = 0x02,
    ReadStatusRegister1 = 0x05,
    WriteStatusRegister1 = 0x01,

    // Standard instruction set.
    // These commands are typically available.
    ReadJEDECID = 0x9F,
    FastRead = 0x0B,
    Powerdown = 0xB9,
    ReleasePowerdown = 0xAB,
    ReadDeviceID = 0x90,
    ChipErase = 0xC7,

    // Extended instruction set.
    // These commands may be available.
    ReadUniqueID = 0x4B,
    ReadSFDPRegister = 0x5A,
    ReadStatusRegister2 = 0x35,
    ReadStatusRegister3 = 0x15,
    ReadFlagStatusRegister = 0x70,
    WriteStatusRegister2 = 0x31,
    WriteStatusRegister3 = 0x11,
    WriteEnableVolatile = 0x50,
    EnableReset = 0x66,
    Reset = 0x99,
    ProgramSuspend = 0x75,
    ProgramResume = 0x7A,

    // Erase instructions.
    // The size affected by each erase operation can vary.
    // Typical sizes are 4kB for sector erase, 32kB for block erase 1,
    // and 64kB for block erase 2.
    SectorErase = 0x20,
    BlockErase1 = 0x52,
    BlockErase2 = 0xD8,

    // Security/lock related instructions.
    EraseSecurityRegisters = 0x44,
    ProgramSecurityRegisters = 0x42,
    ReadSecurityRegisters = 0x48,
    IndividualBlockLock = 0x36,
    IndividualBlockUnlock = 0x39,
    ReadBlockLock = 0x3D,
    GlobalBlockLock = 0x7E,
    GlobalBlockUnlock = 0x98,
}