1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
//! **Spherical Cow**: *A high volume fraction sphere packing library*.
//!
//! # Usage
//!
//! First, add `spherical-cow` to the dependencies in your project's `Cargo.toml`.
//!
//! ```toml
//! [dependencies]
//! spherical-cow = "0.1"
//! ```
//!
//! If you'd like to enable serialization through `serde` add this line instead to turn on that feature
//!
//! ```toml
//! spherical-cow = { version = "0.1", features = ["serde-1"] }
//! ```
//!
//! To calculate the `volume_fraction` of a spherical container with radius 2 filled with spheres of radii between 0.05 and 0.1 is straightforward:
//!
//! ```rust,no_run
//! use spherical_cow::shapes::Sphere;
//! use spherical_cow::PackedVolume;
//! use rand::distributions::Uniform;
//! use nalgebra::{Matrix, Point3};
//!
//! fn main() {
//!     // Pack spheres with radii between 0.05 and 0.1 into a spherical container of radius 2,
//!     // output quantitative analysis data.
//!     let boundary = Sphere::new(Point3::origin(), 2.0).unwrap();
//!     let mut sizes = Uniform::new(0.05, 0.1);
//!
//!     let packed = PackedVolume::new(boundary, &mut sizes).unwrap();
//!
//!     println!("Volume Fraction: {:.2}%", packed.volume_fraction() * 100.);
//! }
//! ```
//!
//! A full list of examples can be found in the [examples](https://github.com/Libbum/spherical-cow/tree/master/examples) directory.
//!
//! # Research
//!
//! The method implemented herein is an advancing front algorithm from
//! Valera *et al.*, [Computational Particle Mechanics 2, 161 (2015)](https://doi.org/10.1007/s40571-015-0045-8).

#![warn(missing_docs)]
#![allow(clippy::needless_doctest_main)]

pub mod errors;
#[cfg(feature = "serde-1")]
mod serialization;
pub mod shapes;
pub mod util;

use crate::errors::SphericalCowError as Error;
use crate::shapes::Sphere;
use float_cmp::ApproxEqRatio;
use itertools::Itertools;
use nalgebra::core::{Matrix, Matrix3};
use nalgebra::Point3;
use rand::distributions::Distribution;
use rand::prelude::SliceRandom;

/// The `Container` trait must be implemented for all shapes you wish to pack spheres into.
/// Standard shapes such as spheres and cuboids already derrive this trait. More complicated
/// shapes such as a triangular mesh are also straightforward to implement, examples
/// of such can be seen in the
/// [`show_in_emerald`](https://github.com/Libbum/spherical-cow/blob/master/examples/show_in_emerald.rs)
/// and [`show_in_cow`](https://github.com/Libbum/spherical-cow/blob/master/examples/show_in_cow.rs) files.
pub trait Container {
    /// Checks if a sphere exists inside some bounding geometry.
    fn contains(&self, sphere: &Sphere) -> bool;
    /// Calculates the volume of this container in normalised units.
    fn volume(&self) -> f32;
}

/// To obtain quantitative values of your packing effectiveness, `PackedVolume` provides
/// a number of useful indicators of such.
#[derive(Debug)]
pub struct PackedVolume<C> {
    /// A set of spheres generated by a call to [pack_spheres](fn.pack_spheres.html).
    pub spheres: Vec<Sphere>,
    /// The container in which spheres have been packed.
    pub container: C,
}

impl<C: Container> PackedVolume<C> {
    /// Creates a new `PackedVolume` by calling [pack_spheres](fn.pack_spheres.html) with a given distribution of sphere sizes
    /// and a `container` to pack into.
    pub fn new<D: Distribution<f64>>(
        container: C,
        mut size_distribution: &mut D,
    ) -> Result<PackedVolume<C>, Error> {
        let spheres = pack_spheres::<C, D>(&container, &mut size_distribution)?;
        Ok(PackedVolume::<C> { spheres, container })
    }

    /// Creates a `PackedVolume` from a pre calculated cluster of `spheres`. Useful for gathering statistics from
    /// packings generated elsewhere for comparison to the current algorithm. Also used for deserialization.
    /// This method is currently unchecked, so use with caution.
    pub fn from_vec(spheres: Vec<Sphere>, container: C) -> PackedVolume<C> {
        PackedVolume::<C> { spheres, container }
    }

    /// Calculates the volume fraction ν = Vs/V: the volume of all spheres packed into a container
    /// divided by the volume of said container.
    ///
    /// The [Kepler Conjecture](http://mathworld.wolfram.com/KeplerConjecture.html) suggests that the
    /// densest possible volume fraction for equal sized spheres is ~74.05%. However, the higest possible
    /// volume fraction for any random radii distribution is currently unknown to
    /// mathematicians. The algorithm implemented herin obtains 59.29% in a cube with side lengths of
    /// 90 with sphere radii between 0.01 and 0.02, compared with a long standing and well known
    /// [geometric compression algorithm](10.1016/j.powtec.2005.04.055) which achieved 52.89%.
    pub fn volume_fraction(&self) -> f32 {
        let vol_spheres: f32 = self.spheres.iter().map(|sphere| sphere.volume()).sum();
        vol_spheres / self.container.volume()
    }

    /// Calculates the void ratio e = Vv/Vs: the volume of all void space divided by the volume of
    /// solids in the container. Here we take 'solids' to mean volumes of all packed spheres.
    pub fn void_ratio(&self) -> f32 {
        let vol_spheres: f32 = self.spheres.iter().map(|sphere| sphere.volume()).sum();
        let vol_total = self.container.volume();
        (vol_total - vol_spheres) / vol_spheres
    }

    /// The coordination number indicates the connectivity of the packing.
    /// For any given sphere in the packing, its coordination number is defined as
    /// the number of spheres it is in contact with. This function returns the
    /// arethmetic mean of all coordination numbers in the packing, yielding a
    /// overall coordination number of the system.
    pub fn coordination_number(&self) -> f32 {
        let num_particles = self.spheres.len() as f32;
        let mut coordinations = 0;
        for idx in 0..self.spheres.len() {
            coordinations += self.sphere_contacts_count(idx);
        }
        coordinations as f32 / num_particles
    }

    /// Generates the fabric tensor of the packing. The sum of all eigenvalues phi_i,j will always equal 1.
    /// Perfectly isotropic packing should see the diagonals of this matrix = 1/3. Deviations from this value
    /// indicates the amount of anisotropy in the system.
    pub fn fabric_tensor(&self) -> Matrix3<f32> {
        let phi = |i: usize, j: usize| {
            let mut sum_all = 0.;
            for idx in 0..self.spheres.len() {
                let center = self.spheres[idx].center.coords;
                // The set of all spheres in contact with the current sphere
                let p_c = self.sphere_contacts(idx);
                // Number of spheres in contact with the current sphere
                let m_p = p_c.len() as f32;
                let mut sum_vec = 0.;
                for c in &p_c {
                    let vec_n_pc = Matrix::cross(&center, &c.center.coords);
                    // The unit vector pointing from the center of the current sphere to
                    // the center of a connecting sphere
                    let n_pc = vec_n_pc / Matrix::norm(&vec_n_pc);
                    sum_vec += n_pc[i] * n_pc[j];
                }
                sum_all += sum_vec / m_p;
            }
            // phiᵢⱼ
            1. / self.spheres.len() as f32 * sum_all
        };
        Matrix3::from_fn(phi)
    }

    /// Returns a set of spheres connected to the sphere at a chosen index.
    fn sphere_contacts(&self, sphere_idx: usize) -> Vec<Sphere> {
        let center = self.spheres[sphere_idx].center;
        let radius = self.spheres[sphere_idx].radius;
        self.spheres
            .iter()
            .cloned()
            .filter(|sphere| {
                nalgebra::distance(&center, &sphere.center)
                    .approx_eq_ratio(&(radius + sphere.radius), 0.0001)
            })
            .collect()
    }

    /// Calculates the number of contacts a sphere has with the rest of the packed set.
    fn sphere_contacts_count(&self, sphere_idx: usize) -> usize {
        let center = self.spheres[sphere_idx].center;
        let radius = self.spheres[sphere_idx].radius;
        self.spheres
            .iter()
            .filter(|sphere| {
                nalgebra::distance(&center, &sphere.center)
                    .approx_eq_ratio(&(radius + sphere.radius), 0.0001)
            })
            .count()
    }
}

/// Packs all habitat spheres to be as dense as possible.
/// Requires a `containter` and a distribution of radii sizes.
///
/// Generally, a uniform distribution is chosen, although this library
/// accepts any distribution implementing `rand`s `Distribution` trait.
/// This [example](https://github.com/Libbum/spherical-cow/blob/master/examples/count_sphere_normal.rs)
/// uses a normally distributed radii range. Note that the packing is sub optimal in this case, and
/// attention must be paid when using such distributions that radii values do not become negagive.
pub fn pack_spheres<C: Container, D: Distribution<f64>>(
    container: &C,
    size_distribution: &mut D,
) -> Result<Vec<Sphere>, Error> {
    // Distribution is already derrived for all distributions in `rand` with f64,
    // so we just downsample here instead of implementing traits on f32 for everything.
    let mut rng = rand::thread_rng();

    // Radii of three initial spheres, taken from the input distribution
    let init_radii: [f32; 3] = [
        size_distribution.sample(&mut rng) as f32,
        size_distribution.sample(&mut rng) as f32,
        size_distribution.sample(&mut rng) as f32,
    ];

    // S := {s₁, s₂, s₃}
    let mut spheres = init_spheres(&init_radii, container)?;

    // F := {s₁, s₂, s₃}
    let mut front = spheres.clone();

    // Radius of new sphere to be added to the current front, taken from the input distribution
    let mut new_radius = size_distribution.sample(&mut rng) as f32;

    let mut set_v = Vec::new();
    let mut set_f = Vec::new();
    'outer: while !front.is_empty() {
        // s₀ := s(c₀, r₀) picked at random from F
        let curr_sphere = front.choose(&mut rng).ok_or(Error::NoneFront)?.clone();
        // V := {s(c', r') ∈ S : d(c₀, c') ≤ r₀ + r' + 2r}
        set_v.clear();
        set_v = spheres
            .iter()
            .cloned()
            .filter(|s_dash| {
                s_dash != &curr_sphere
                    && nalgebra::distance(&curr_sphere.center, &s_dash.center)
                        <= curr_sphere.radius + s_dash.radius + 2. * new_radius
            })
            .collect::<Vec<_>>();

        for (s_i, s_j) in set_v.iter().tuple_combinations::<(&Sphere, &Sphere)>() {
            set_f.clear();
            identify_f(
                &mut set_f,
                &curr_sphere,
                s_i,
                s_j,
                container,
                &set_v,
                new_radius,
            )?;
            if !set_f.is_empty() {
                // Found at least one position to place the sphere,
                // choose one and move on
                let s_new = set_f.choose(&mut rng).ok_or(Error::NoneSetF)?;
                front.push(s_new.clone());
                spheres.push(s_new.clone());
                new_radius = size_distribution.sample(&mut rng) as f32;
                continue 'outer;
            }
        }
        if let Some(i) = front.iter().position(|s| s == &curr_sphere) {
            front.remove(i);
        }
    }
    Ok(spheres)
}

/// Creates three initial spheres that are tangent pairwise. The incenter of the triangle formed
/// by verticies located at the centers of each sphere is aligned at the origin.
fn init_spheres<C: Container>(radii: &[f32; 3], container: &C) -> Result<Vec<Sphere>, Error> {
    let mut init = Vec::new();

    //            C (x,y)
    //            ^
    //           / \
    //        b /   \ a
    //         /     \
    //        /       \
    // A (0,0)--------- B (c,0)
    //            c

    // Sphere A can sit at the origin, sphere B extends outward along the x axis
    // sphere C extends outward along the y axis and complete the triangle
    let radius_a = radii[0];
    let radius_b = radii[1];
    let radius_c = radii[2];
    let distance_c = radius_a + radius_b;
    let distance_b = radius_a + radius_c;
    let distance_a = radius_c + radius_b;

    let b_2 = distance_b.powi(2);
    let x = (b_2 + distance_c.powi(2) - distance_a.powi(2)) / (2. * distance_c);
    let y = (b_2 - x.powi(2)).sqrt();

    // Find incenter
    let perimeter = distance_a + distance_b + distance_c;
    let incenter_x = (distance_b * distance_c + distance_c * x) / perimeter;
    let incenter_y = (distance_c * y) / perimeter;

    // Create spheres at positions shown in the diagram above, but offset such
    // that the incenter is now the origin. This offset attempts to minimise
    // bounding box issues in the sense that c may be close to or over the
    // bb boundary already
    let s_1 = Sphere::new(Point3::new(-incenter_x, -incenter_y, 0.), radius_a)?;
    if container.contains(&s_1) {
        init.push(s_1);
    } else {
        return Err(Error::Uncontained);
    }
    let s_2 = Sphere::new(
        Point3::new(distance_c - incenter_x, -incenter_y, 0.),
        radius_b,
    )?;
    if container.contains(&s_2) {
        init.push(s_2);
    } else {
        return Err(Error::Uncontained);
    }
    let s_3 = Sphere::new(Point3::new(x - incenter_x, y - incenter_y, 0.), radius_c)?;
    if container.contains(&s_3) {
        init.push(s_3);
    } else {
        return Err(Error::Uncontained);
    }

    Ok(init)
}

/// $f$ is as a set of spheres (or the empty set) such that they have a known `radius`,
/// are in outer contact with `s_1`, `s_2` and `s_3` simultaneously, are completely
/// contained in `container` and do not overlap with any element of `set_v`.
/// The set f has at most two elements, because there exist at most two spheres with
/// `radius` in outer contact with `s_1`, `s_2` and `s_3` simultaneously.
fn identify_f<C: Container>(
    set_f: &mut Vec<Sphere>,
    s_1: &Sphere,
    s_2: &Sphere,
    s_3: &Sphere,
    container: &C,
    set_v: &[Sphere],
    radius: f32,
) -> Result<(), Error> {
    //The center points of s_1, s_2, s_3 are verticies of a tetrahedron,
    //and the distances d_1, d_2, d_3 can be defined as the distances from these points to
    //a fourth vertex s_4, whose coordinates x,y,z must be found. This satisfies the equations
    // (x-x_1)^2+(y-y_1)^2+(z-z_1)^2=d_1^2 (1)
    // (x-x_2)^2+(y-y_2)^2+(z-z_2)^2=d_2^2 (2)
    // (x-x_3)^2+(y-y_3)^2+(z-z_3)^2=d_3^2 (3)

    //To solve this system, we subtract (1) from (2) & (3), to obtain the (linear) equations of two planes.
    //Coupling these planes to (1) we yield a quadratic system which takes the form
    // \vec u\cdot\vec r=a
    // \vec v\cdot\vec r=b
    // \vec r\cdot\vec r+\vec w\cdot\vec r=c

    // With a little bit of magic following https://axiomatic.neophilus.net/posts/2018-01-16-clustering-tangent-spheres.html
    // we can solve this system to identify r in the form
    // \vec r=\alpha\vec u+\beta\vec v+\gamma\vec t
    // Where \gamma has a quadratic solution identifying our two solutions.

    let distance_14 = s_1.radius + radius;
    let distance_24 = s_2.radius + radius;
    let distance_34 = s_3.radius + radius;

    let vector_u = s_1.center - s_2.center;
    let unitvector_u = vector_u / Matrix::norm(&vector_u);
    let vector_v = s_1.center - s_3.center;
    let unitvector_v = vector_v / Matrix::norm(&vector_v);
    let cross_uv = Matrix::cross(&vector_u, &vector_v);
    let unitvector_t = cross_uv / Matrix::norm(&cross_uv);
    let vector_w = -2. * s_1.center.coords;

    let distance_c =
        distance_14.powi(2) - s_1.center.x.powi(2) - s_1.center.y.powi(2) - s_1.center.z.powi(2);
    let distance_a = (distance_24.powi(2)
        - distance_c
        - s_2.center.x.powi(2)
        - s_2.center.y.powi(2)
        - s_2.center.z.powi(2))
        / (2. * Matrix::norm(&vector_u));
    let distance_b = (distance_34.powi(2)
        - distance_c
        - s_3.center.x.powi(2)
        - s_3.center.y.powi(2)
        - s_3.center.z.powi(2))
        / (2. * Matrix::norm(&vector_v));

    let dot_uv = Matrix::dot(&unitvector_u, &unitvector_v);
    let dot_wt = Matrix::dot(&vector_w, &unitvector_t);
    let dot_uw = Matrix::dot(&unitvector_u, &vector_w);
    let dot_vw = Matrix::dot(&unitvector_v, &vector_w);

    let denominator = 1. - dot_uv.powi(2);
    let alpha = (distance_a - distance_b * dot_uv) / denominator;
    let beta = (distance_b - distance_a * dot_uv) / denominator;
    let value_d =
        alpha.powi(2) + beta.powi(2) + 2. * alpha * beta * dot_uv + alpha * dot_uw + beta * dot_vw
            - distance_c;

    // There is a possiblity of obtaining imaginary solutions in gamma,
    // so we must check this comparison. TODO: Would be nice to have
    // some quick way of verifying this configuration and deny it early.
    let dot_wt_2 = dot_wt.powi(2);
    let value_4d = 4. * value_d;
    if dot_wt_2 > value_4d {
        let gamma_pos = 0.5 * (-dot_wt + (dot_wt_2 - value_4d).sqrt());
        let gamma_neg = 0.5 * (-dot_wt - (dot_wt_2 - value_4d).sqrt());

        let s_4_positive = Sphere::new(
            Point3::from(alpha * unitvector_u + beta * unitvector_v + gamma_pos * unitvector_t),
            radius,
        )?;
        let s_4_negative = Sphere::new(
            Point3::from(alpha * unitvector_u + beta * unitvector_v + gamma_neg * unitvector_t),
            radius,
        )?;

        // Make sure the spheres are bounded by the containing geometry and do not overlap any spheres in V
        if container.contains(&s_4_positive) && !set_v.iter().any(|v| v.overlaps(&s_4_positive)) {
            set_f.push(s_4_positive);
        }
        if container.contains(&s_4_negative) && !set_v.iter().any(|v| v.overlaps(&s_4_negative)) {
            set_f.push(s_4_negative);
        }
    }
    Ok(())
}

#[test]
fn init_spheres_err() {
    let container = Sphere::new(Point3::origin(), 0.1).unwrap();
    assert!(init_spheres(&[10., 15., 20.], &container).is_err());
}

#[test]
fn identify_f_known() {
    let one = Sphere::new(Point3::new(0.5, -0.28112677, 0.0), 0.5).unwrap();
    let two = Sphere::new(Point3::new(0.058333218, 0.44511732, 0.0), 0.35).unwrap();
    let three = Sphere::new(Point3::new(-0.70000005, -0.28112677, 0.0), 0.7).unwrap();
    let container = Sphere::new(Point3::origin(), 20.0).unwrap();

    let four_p = Sphere::new(Point3::new(0.06666666, 0.12316025, 0.6773287), 0.4).unwrap();
    let four_n = Sphere::new(Point3::new(0.06666666, 0.12316025, -0.6773287), 0.4).unwrap();

    let mut found = Vec::new();
    identify_f::<Sphere>(&mut found, &one, &two, &three, &container, &Vec::new(), 0.4).unwrap();

    println!("{:?}", found);
    assert!(found.contains(&four_p));
    assert!(found.contains(&four_n));
}