1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
/// Generates a function that returns the quotient and remainder of unsigned integer division of
/// `duo` by `div`. This uses $uX by $uX sized divisions. The function uses 3 different algorithms
/// (and several conditionals for simple cases) that handle almost all numerical magnitudes
/// efficiently.
macro_rules! impl_div_rem {
    (
        $unsigned_name:ident, //name of the unsigned function
        $signed_name:ident, //name of the signed function
        $test_name:ident, //name of the test function
        $n_h:expr, //the number of bits in $iH or $uH
        $uH:ident, //unsigned integer with half the bit width of $uX
        $uX:ident, //the largest division instruction that this function calls operates on this
        $uD:ident, //unsigned integer with double the bit width of $uX
        $iD:ident, //signed version of $uD
        $bit_selector_max:expr, //the max value of the smallest bit string needed to index the bits of an $uD
        $($unsigned_attr:meta),*; //attributes for the unsigned function
        $($signed_attr:meta),*; //attributes for the signed function
        $use_n_d_by_n_division:expr, //use the `n_d_by_n_division` if it is availiable
        $n_d_by_n_division:ident
    ) => {
        //wrapping_{} was used everywhere for better performance when compiling with
        //`debug-assertions = true`

        /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
        /// tuple.
        ///
        /// # Panics
        ///
        /// When attempting to divide by zero, this function will panic.
        $(
            #[$unsigned_attr]
        )*
        pub fn $unsigned_name(duo: $uD, div: $uD) -> ($uD,$uD) {

            // TODO if and when `carrying_mul` (rust-lang rfc #2417) is stabilized, this can be fixed
            // LLVM correctly optimizes this to use a widening multiply to 128 bits
            #[inline(always)]
            pub fn carrying_mul(lhs: $uX, rhs: $uX) -> ($uX, $uX) {
                let tmp = (lhs as $uD).wrapping_mul(rhs as $uD);
                (tmp as $uX, (tmp >> ($n_h * 2)) as $uX)
            }
            #[inline(always)]
            pub fn carrying_mul_add(lhs: $uX, mul: $uX, add: $uX) -> ($uX, $uX) {
                let tmp = (lhs as $uD).wrapping_mul(mul as $uD).wrapping_add(add as $uD);
                (tmp as $uX, (tmp >> ($n_h * 2)) as $uX)
            }

            // the number of bits in a $uX
            let n = $n_h * 2;
            let n_d = n * 2;

            // Note that throughout this function, `lo` and `hi` refer to the high and low `n` bits
            // of a `$uD`, `0` to `3` refer to the 4 `n_h` bit parts of a `$uD`,
            // and `mid` refer to the middle two `n_h` parts.

            let div_lz = div.leading_zeros();
            let mut duo_lz = duo.leading_zeros();

            // division by zero branch
            if div_lz == n_d {
                panic!("division by zero")
            }

            // the possible ranges of `duo` and `div` at this point:
            // `0 <= duo < 2^n_d`
            // `1 <= div < 2^n_d`

            // quotient is 0 or 1 branch
            if div_lz <= duo_lz {
                // The quotient cannot be more than 1. The highest set bit of `duo` needs to be at
                // least one place higher than `div` for the quotient to be more than 1.
                if duo >= div {
                    return (1,duo.wrapping_sub(div))
                } else {
                    return (0,duo)
                }
            }

            // `_sb` is the number of significant bits (from the ones place to the highest set bit)
            // `{2, 2^div_sb} <= duo < 2^n_d`
            // `1 <= div < {2^duo_sb, 2^(n_d - 1)}`
            // smaller division branch
            if duo_lz >= n {
                // `duo < 2^n` so it will fit in a $uX. `div` will also fit in a $uX (because of the
                // `div_lz <= duo_lz` branch) so no numerical error.
                return (
                    (duo as $uX).wrapping_div(div as $uX) as $uD,
                    (duo as $uX).wrapping_rem(div as $uX) as $uD
                )
            }

            // relative leading significant bits, cannot be negative because of above branches
            let rel_leading_sb = div_lz.wrapping_sub(duo_lz);

            // It gives a performance increase to cases like the `u128_div_rem_126_64_new`, and is
            // not useful elswhere. An entire new `impl_div_rem_2` function was made, but it barely
            // improved one benchmark and degraded the others.
            if $use_n_d_by_n_division && (rel_leading_sb < n) && (div_lz >= n) {
                let (quo, rem) = unsafe { $n_d_by_n_division(duo, div as $uX) };
                return (quo as $uD, rem as $uD);
            }

            // `{2^n, 2^div_sb} <= duo < 2^n_d`
            // `1 <= div < {2^duo_sb, 2^(n_d - 1)}`
            // regular long division branch
            if div_lz >= (n + $n_h) {
                // `1 <= div < {2^duo_sb, 2^n_h}`
                //this is optimized for assuming `duo` has few leading zeros so no branching here.
                let div_lo = (div as $uH) as $uX;

                let duo_hi = (duo >> n) as $uX;
                let quo_hi = duo_hi.wrapping_div(div_lo);
                //all of the `rem_{}`s cannot be larger than `$uH::MAX`,
                //since `div` cannot be larger than `$uH::MAX`.
                let rem_2 = duo_hi.wrapping_rem(div_lo) as $uH;

                let duo_mid =
                    (((duo >> $n_h) as $uH) as $uX)
                    | ((rem_2 as $uX) << $n_h);
                let quo_1 = duo_mid.wrapping_div(div_lo) as $uH;
                let rem_1 = duo_mid.wrapping_rem(div_lo) as $uH;

                let duo_lo =
                    ((duo as $uH) as $uX)
                    | ((rem_1 as $uX) << $n_h);
                let quo_0 = duo_lo.wrapping_div(div_lo) as $uH;
                return (
                    (quo_0 as $uD) | ((quo_1 as $uD) << $n_h) | ((quo_hi as $uD) << n),
                    (duo_lo.wrapping_rem(div_lo) as $uH) as $uD
                )
            }

            // `{2^n, 2^div_sb} <= duo < 2^n_d`
            // `2^n_h <= div < {2^duo_sb, 2^(n_d - 1)}`
            // `mul` or `mul - 1` branch
            if rel_leading_sb < $n_h {
                // proof that `quo` can only be `mul` or `mul - 1`.
                // disclaimer: this is not rigorous
                //
                // We are trying to find the quotient, `quo`.
                // 1. quo = duo / div. (definition)
                //
                // `shift` is the number of bits not in the higher `n` significant bits of `duo`
                // 2. shift = n - duo_lz. (definition)
                // 3. duo_sig_n == duo / 2^shift. (definition)
                // 4. div_sig_n == div / 2^shift. (definition)
                // Note: the `_sig_n` (which in my notation usually means that the variable uses the
                // most significant `n` bits) on `div_sig_n` is a misnomer, because instead of using
                // a shift by `n - div_lz`, what I do is use the `n - duo_lz` shift so that the bits
                // of (4) correspond to (3).
                //
                // this is because of the bits less significant than the sig_n bits that are cut off
                // during the bit shift
                // 5. duo_sig_n * 2^shift <= duo < (duo_sig_n + 1) * 2^shift.
                // 6. div_sig_n * 2^shift <= div < (div_sig_n + 1) * 2^shift.
                //
                // dividing each bound of (5) by each bound of (6)
                // (duo_sig_n * 2^shift) / (div_sig_n * 2^shift)
                // (duo_sig_n * 2^shift) / ((div_sig_n + 1) * 2^shift)
                // ((duo_sig_n + 1) * 2^shift) / (div_sig_n * 2^shift)
                // ((duo_sig_n + 1) * 2^shift) / ((div_sig_n + 1) * 2^shift)
                // simplifying each of these four
                // duo_sig_n / div_sig_n
                // duo_sig_n / (div_sig_n + 1)
                // (duo_sig_n + 1) / div_sig_n
                // (duo_sig_n + 1) / (div_sig_n + 1)
                // taking the smallest and the largest of these as the low and high bounds
                // and replacing `duo / div` with `quo`
                // 7. duo_sig_n / (div_sig_n + 1) <= quo < (duo_sig_n + 1) / div_sig_n
                //
                // Here is where the range restraints from the previous branches becomes necessary.
                // To help visualize what needs to happen here, is that the top `n` significant
                // bits of `duo` are being divided with the corresponding bits of `div`.
                //
                // The `rel_leading_sb < n_h` conditional on this branch makes sure that `div_sig_n`
                // is at least `2^n_h`, and the previous branches make sure that the highest bit of
                // `div_sig_n` is not the `2^(n - 1)` bit (which `duo_sig_n` has been shifted up to
                // attain).
                // 8. `2^(n - 1) <= duo_sig_n < 2^n`
                // 9. `2^n_h <= div_sig_n < 2^(n - 1)`
                // 10. mul == duo_sig_n / div_sig_n. (definition)
                //
                // Using the bounds (8) and (9) with the `duo_sig_n / (div_sig_n + 1)` term. Note
                // that on the `<` bounds we subtract 1 to make it inclusive.
                // (2^n - 1) / (2^n_h + 1) = 2^n_h - 1
                // 2^(n - 1) / 2^(n - 1) = 1
                // The other equations using the both upper bounds or both lower bounds end up with
                // values in the middle of this range.
                // 11. 1 <= mul <= 2^n_h - 1
                //
                // However, all this tells us is that `mul` can fit in a $uH.
                // We want to show that `mul - 1 <= quo < mul + 1`. What this and (7) means is that
                // the bits cut off by the shift at the beginning can only affect `quo` enough to
                // change it between two values. First, I will show that
                // `(duo_sig_n + 1) / div_sig_n` is equal to or less than `mul + 1`. We cannot
                // simply use algebra here and say that `1 / div_sig_n` is 0, because we are working
                // with truncated integer division. If the remainder is `div_sig_n - 1`, then the
                // `+ 1` can be enough to cross the boundary and increment the quotient
                // (e.x. 127/32 = 3, 128/32 = 4). Instead, we notice that in order for the remainder
                // of `(duo_sig_n + x) / div_sig_n` to be wrapped around twice, `x` must be 1 for
                // one of the wrap arounds and another `div_sig_n` added on to it to wrap around
                // again. This cannot happen even if `div_sig_n` were 1, so
                // 12. duo_sig_n / (div_sig_n + 1) <= quo < mul + 1
                //
                // Next, we want to show that `duo_sig_n / (div_sig_n + 1)` is more than or equal to
                // `mul - 1`. Putting all the combinations of bounds from (8) and (9) into (10) and
                // `duo_sig_n / (div_sig_n + 1)`,
                // (2^n - 1) / 2^n_h = 2^n_h - 1
                // (2^n - 1) / (2^n_h + 1) = 2^n_h - 1
                //
                // (2^n - 1) / (2^(n - 1) - 1) = 2
                // (2^n - 1) / (2^(n - 1) - 1 + 1) = 1
                //
                // 2^(n - 1) / 2^n_h = 2^(n_h - 1)
                // 2^(n - 1) / (2^n_h + 1) = 2^(n_h - 1) - 1
                //
                // 2^(n - 1) / (2^(n - 1) - 1) = 1
                // 2^(n - 1) / 2^(n - 1) = 1
                //
                // 13. mul - 1 <= quo < mul + 1
                //
                // In a lot of division algorithms using smaller divisions to construct a larger
                // division, we often encounter a situation where the approximate `mul` value
                // calculated from a smaller division is a few increments away from the true `quo`
                // value. In those algorithms, they have to do more divisions. Because of the fact
                // that our `quo` can only be one of two values, we can try the higher value `mul`
                // and see if `duo - (mul*div)` overflows. If it did overflow, then `quo` must be
                // `mul - 1`, and because we already calculated `duo - (mul*div)` with wrapping
                // operations, we can do simple operations without dividing again to find
                // `duo - ((mul - 1)*div) = duo - (mul*div - div) = duo + div - mul*div`. If it
                // did not overflow, then `mul` must be the answer, because the remainder of
                // `duo - ((mul - 1)*div)` is larger and farther away from overflow than
                // `duo - (mul*div)`, which we already found is not overflowing.
                //
                // Thus, we find the quotient using only an `n` sized divide to find `mul`
                // and a `n` by `d_n` sized multiply and comparison to find if `quo * mul > duo`,
                // following with adds and subtracts to get the correct values.
                let shift = n.wrapping_sub(duo_lz);
                let duo_sig_n = (duo >> shift) as $uX;
                let div_sig_n = (div >> shift) as $uX;
                let mul = duo_sig_n.wrapping_div(div_sig_n);
                // inline `n` bit by `n_d` bit multiplication and overflow check (we cannot do
                // `mul * div > duo` directly because of possibility of overflow beyond 128 bits)
                // duo cannot be more than `2^n_d - 1`, and overflow means a value more than that
                let div_lo = div as $uX;
                let div_hi = (div >> n) as $uX;
                let (tmp_lo, carry) = carrying_mul(mul,div_lo);
                let (tmp_hi, overflow) = carrying_mul_add(mul,div_hi,carry);
                let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n);
                // Note that the overflow cannot be more than 1, otherwise the `div` subtraction
                // would not be able to bring the remainder value below 2^n_d - 1, which
                // contradicts many things. The `& 1` is here to encourage overflow flag use.
                if ((overflow & 1) != 0) || (duo < tmp) {
                    return (
                        mul.wrapping_sub(1) as $uD,
                        duo.wrapping_add(div.wrapping_sub(tmp))
                    )
                } else {
                    return (
                        mul as $uD,
                        duo.wrapping_sub(tmp)
                    )
                }
            }

            // special long division algorithm. This algorithm only works with a very restricted
            // subset of the possible values of `duo` and `div`, hence why many special cases were
            // tested above
            // Instead of clearing a minimum of 1 bit from `duo` per iteration via
            // binary long division, `n_h - 1` bits are cleared per iteration with this algorithm.
            // It is a more complicated version of long division.
            // For an example, consider the division of 76543210 by 213 and assume that `n_h`
            // is equal to two decimal digits (note: we are working with base 10 here for
            // readability. I don't know if the algorithm breaks in general for non powers of two).
            // The first `h_n` part of the divisor (21) is taken and is incremented by
            // 1 to prevent oversubtraction.
            // In the first step, the first `n` part of duo (7654) is divided by the 22 to make 347.
            // We remember that there was 1 extra place not in the `n_h` part of the divisor and
            // shift the 347 right by 1, in contrast to a normal long division. The 347 is
            // multiplied by the whole divisor to make 73911, and subtracted from duo to finish the
            // step.
            //    347
            //  ________
            // |76543210
            // -73911
            //   2632210
            // Two more steps are taken after this and then duo fits into `n` bits, and then a final
            // normal long division step is made.
            //        14
            //       443
            //     119
            //    347
            //  ________
            // |76543210
            // -73911
            //   2632210
            //  -25347
            //     97510
            //    -94359
            //      3151
            // The tower at the top is added together to produce the quotient, 359357 (but in the
            // actual algorithm, the quotient is progressively added to each step instead of at
            // the end).
            // In the actual algorithm below, instead of the final normal long division step, one of
            // the three other algorithms ("quotient is 0 or 1", "mul or mul - 1", or
            // "n sized division") is used.

            let mut duo = duo;

            // the number of lesser significant bits not a part of `div_sig_n_h`. Must be positive.
            let div_lesser_places = (n + $n_h).wrapping_sub(div_lz);

            // the most significant `n_h` bits of div
            let div_sig_n_h = (div >> div_lesser_places) as $uH;

            // has to be a `$uX` in case of overflow
            let div_sig_n_h_add1 = (div_sig_n_h as $uX).wrapping_add(1);

            let mut quo: $uD = 0;

            // `{2^n, 2^(div_sb + n_h)} <= duo < 2^n_d`
            // `2^n_h <= div < {2^(duo_sb - n_h), 2^n}`
            loop {
                let duo_lesser_places = n.wrapping_sub(duo_lz);
                let duo_sig_n = (duo >> duo_lesser_places) as $uX;

                if div_lesser_places <= duo_lesser_places {
                    let mul = duo_sig_n.wrapping_div(div_sig_n_h_add1) as $uD;
                    let place = duo_lesser_places.wrapping_sub(div_lesser_places);

                    //addition to the quotient
                    quo = quo.wrapping_add(mul << place);

                    //subtraction from `duo`
                    //at least `n_h - 1` bits are cleared from `duo` here
                    duo = duo.wrapping_sub(div.wrapping_mul(mul) << place);
                } else {
                    //`mul` or `mul - 1` algorithm
                    let shift = n.wrapping_sub(duo_lz);
                    let duo_sig_n = (duo >> shift) as $uX;
                    let div_sig_n = (div >> shift) as $uX;
                    let mul = duo_sig_n.wrapping_div(div_sig_n);
                    let div_lo = div as $uX;
                    let div_hi = (div >> n) as $uX;

                    let (tmp_lo, carry) = carrying_mul(mul,div_lo);
                    // The special long division algorithm has already run once, so overflow beyond
                    // 128 bits is not possible here
                    let (tmp_hi, _) = carrying_mul_add(mul,div_hi,carry);
                    let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n);

                    if duo < tmp {
                        return (
                            // note that this time, the "mul or mul - 1" result is added to `quo`
                            // to get the final correct quotient
                            quo.wrapping_add(mul.wrapping_sub(1) as $uD),
                            duo.wrapping_add(
                                div.wrapping_sub(tmp)
                            )
                        )
                    } else {
                        return (
                            quo.wrapping_add(mul as $uD),
                            duo.wrapping_sub(tmp)
                        )
                    }
                }

                duo_lz = duo.leading_zeros();
                if div_lz <= duo_lz {
                    //quotient can have 0 or 1 added to it
                    if div <= duo {
                        return (
                            quo.wrapping_add(1),
                            duo.wrapping_sub(div)
                        )
                    } else {
                        return (
                            quo,
                            duo
                        )
                    }
                }

                // This can only happen if `div_sd < n` (because of previous "quo = 0 or 1"
                // branches), but it is not worth it to unroll further.
                if duo_lz >= n {
                    // simple division and addition
                    return (
                        quo.wrapping_add((duo as $uX).wrapping_div(div as $uX) as $uD),
                        (duo as $uX).wrapping_rem(div as $uX) as $uD
                    )
                }
            }
        }

        /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
        /// tuple.
        ///
        /// # Panics
        ///
        /// When attempting to divide by zero, this function will panic.
        $(
            #[$signed_attr]
        )*
        pub fn $signed_name(duo: $iD, div: $iD) -> ($iD,$iD) {
            match (duo < 0, div < 0) {
                (false,false) => {
                    let t = $unsigned_name(duo as $uD,div as $uD);
                    (t.0 as $iD,t.1 as $iD)
                },
                (true,false) => {
                    let t = $unsigned_name(duo.wrapping_neg() as $uD,div as $uD);
                    ((t.0 as $iD).wrapping_neg(),(t.1 as $iD).wrapping_neg())
                },
                (false,true) => {
                    let t = $unsigned_name(duo as $uD,div.wrapping_neg() as $uD);
                    ((t.0 as $iD).wrapping_neg(),t.1 as $iD)
                },
                (true,true) => {
                    let t = $unsigned_name(duo.wrapping_neg() as $uD,div.wrapping_neg() as $uD);
                    (t.0 as $iD,(t.1 as $iD).wrapping_neg())
                },
            }
        }

        #[test]
        fn $test_name() {
            type T = $uD;
            let n = $n_h * 4;
            // checks all possible single continuous strings of ones (except when all bits are zero)
            // uses about 68 million iterations for T = u128
            let mut lhs0: T = 1;
            for i0 in 1..=n {
                let mut lhs1 = lhs0;
                for i1 in 0..i0 {
                    let mut rhs0: T = 1;
                    for i2 in 1..=n {
                        let mut rhs1 = rhs0;
                        for i3 in 0..i2 {
                            assert_eq!(
                                (lhs1.wrapping_div(rhs1),
                                lhs1.wrapping_rem(rhs1)),$unsigned_name(lhs1,rhs1)
                            );
                            assert_eq!(
                                (
                                    (lhs1 as $iD).wrapping_div(rhs1 as $iD),
                                    (lhs1 as $iD).wrapping_rem(rhs1 as $iD)
                                ),
                                $signed_name(lhs1 as $iD,rhs1 as $iD)
                            );
                            rhs1 ^= 1 << i3;
                        }
                        rhs0 <<= 1;
                        rhs0 |= 1;
                    }
                    lhs1 ^= 1 << i1;
                }
                lhs0 <<= 1;
                lhs0 |= 1;
            }
            // binary fuzzer
            use rand::random;
            let mut lhs: T = 0;
            let mut rhs: T = 0;
            let mut ones: T;
            for _ in 0..10_000_000 {
                let r0: u32 = $bit_selector_max & random::<u32>();
                ones = 0;
                for _ in 0..r0 {
                    ones <<= 1;
                    ones |= 1;
                }
                let r1: u32 = $bit_selector_max & random::<u32>();
                let mask = ones.rotate_left(r1);
                match (random(),random(),random()) {
                    (false,false,false) => lhs |= mask,
                    (false,false,true) => lhs &= mask,
                    (false,true,false) => lhs ^= mask,
                    (false,true,true) => lhs ^= mask,
                    (true,false,false) => rhs |= mask,
                    (true,false,true) => rhs &= mask,
                    (true,true,false) => rhs ^= mask,
                    (true,true,true) => rhs ^= mask,
                }
                if rhs != 0 {
                    assert_eq!(
                        (lhs.wrapping_div(rhs), lhs.wrapping_rem(rhs)),
                        $unsigned_name(lhs,rhs)
                    );
                }
            }
        }
    }
}