1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
#![no_std]

use core::ops::{Add, Sub};

/// Low-level bindings to double-precision Cephes functions.
///
/// This provides access to the C function implemented in Cephes for maximum
/// flexibility.
#[allow(dead_code)]
pub mod unsafe_cephes_double {
    extern "C" {
        // Floating point numeric utilities
        /// Round to nearest or event integer valued f64.
        pub fn round(x: f64) -> f64;
        /// Largest integer less than or equal to x.
        pub fn floor(x: f64) -> f64;
        /// Smallest integer greater than or equal to x.
        pub fn ceil(x: f64) -> f64;
        /// Return the significand between 0.5 and 1. Write exponent to expnt.
        /// x = y * 2**expn
        pub fn frexp(x: f64, expnt: &mut i32) -> f64;
        /// Multiply x by 2**n.
        pub fn ldexp(x: f64, n: i32) -> f64;
        /// Absolute value.
        pub fn fabs(x: f64) -> f64;
        /// Return 1 if the sign bit of x is 1, else 0.
        pub fn signbit(x: f64) -> i32;
        /// Return 1 if x is NaN, else 0.
        pub fn isnan(x: f64) -> i32;
        /// Return 1 if x is finite, else 0.
        pub fn isfinite(x: f64) -> i32;

        // Roots
        /// Cube root.
        pub fn cbrt(x: f64) -> f64;
        /// Square root.
        pub fn sqrt(x: f64) -> f64;
        /// Integer square root.
        pub fn lsqrt(x: i64) -> i64;

        // Exponential functions
        /// Exponential function.
        pub fn exp(x: f64) -> f64;
        /// Base 10 exponential function.
        pub fn exp10(x: f64) -> f64;
        /// Base 2 exponential function.
        pub fn exp2(x: f64) -> f64;
        /// Compute accurately exponential of squared argument.
        pub fn expm1(x: f64) -> f64;
        /// Compute accurately exp(x) - 1 for x close to 0.
        pub fn expx2(x: f64, sign: i32) -> f64;
        /// Exponential integral.
        pub fn ei(x: f64) -> f64;
        /// Error function.
        pub fn erf(x: f64) -> f64;
        /// Complementary error function.
        pub fn erfc(x: f64) -> f64;
        /// Power function.
        pub fn pow(x: f64, y: f64) -> f64;
        /// Integer power function.
        pub fn powi(x: f64, n: i32) -> f64;

        // Logarithmic functions
        /// Natural logarithm.
        pub fn log(x: f64) -> f64;
        /// Common logarithm.
        pub fn log10(x: f64) -> f64;
        /// Base 2 logarithm.
        pub fn log2(x: f64) -> f64;
        /// Compute accurately log(1 + x) for x close to 0.
        pub fn log1p(x: f64) -> f64;
        /// Dilogarithm (Spence's function).
        pub fn spence(x: f64) -> f64;

        // Trigonometric functions
        /// Circular sine.
        pub fn sin(x: f64) -> f64;
        /// Circular cosine.
        pub fn cos(x: f64) -> f64;
        /// Circular tangent.
        pub fn tan(x: f64) -> f64;
        /// Inverse circular sine.
        pub fn asin(x: f64) -> f64;
        /// Inverse circular cosine.
        pub fn acos(x: f64) -> f64;
        /// Inverse circular tangent.
        pub fn atan(x: f64) -> f64;
        /// Quadrant-correct inverse circular tangent.
        pub fn atan2(y: f64, x: f64) -> f64;
        /// Compute accurately cos(x) - 1 for x close to 0.
        pub fn cosm1(x: f64) -> f64;
        /// Sine and cosine integrals.
        pub fn sici(x: f64, si: &mut f64, ci: &mut f64) -> i32;

        // Hyperbolic functions
        /// Hyperbolic sine.
        pub fn sinh(x: f64) -> f64;
        /// Hyperbolic cosine.
        pub fn cosh(x: f64) -> f64;
        /// Hyperbolic tangent.
        pub fn tanh(x: f64) -> f64;
        /// Inverse hyperbolic sine.
        pub fn asinh(x: f64) -> f64;
        /// Inverse hyperbolic cosine.
        pub fn acosh(x: f64) -> f64;
        /// Inverse hyperbolic tangent.
        pub fn atanh(x: f64) -> f64;
        /// Hyperbolic sine and cosine integrals.
        pub fn shichi(x: f64, chi: &mut f64, shi: &mut f64) -> i32;

        // Beta functions
        /// Beta function.
        pub fn beta(a: f64, b: f64) -> f64;
        /// Regularized incomplete beta function.
        pub fn incbet(a: f64, b: f64, x: f64) -> f64;
        /// Inverse of incomplete beta integral.
        pub fn incbi(a: f64, b: f64, y: f64) -> f64;

        // Gamma functions
        /// Gamma function.
        pub fn gamma(x: f64) -> f64;
        /// Reciprocal gamma function.
        pub fn rgamma(x: f64) -> f64;
        /// Natural logarithm of gamma function.
        pub fn lgam(x: f64) -> f64;
        /// Regularized incomplete gamma integral.
        pub fn igam(a: f64, x: f64) -> f64;
        /// Complemented incomplete gamma integral.
        pub fn igamc(a: f64, x: f64) -> f64;
        /// Inverse of complemented incomplete gamma integral.
        pub fn igami(a: f64, p: f64) -> f64;
        /// Psi (digamma) function.
        pub fn psi(x: f64) -> f64;
        /// Factorial function.
        pub fn fac(i: i32) -> f64;

        // Bessel functions
        /// Bessel function of order zero.
        pub fn j0(x: f64) -> f64;
        /// Bessel function of order one.
        pub fn j1(x: f64) -> f64;
        /// Bessel function of integer order.
        pub fn jn(n: i32, x: f64) -> f64;
        /// Bessel function of real order.
        pub fn jv(n: f64, x: f64) -> f64;

        /// Bessel function of the second kind, order zero.
        pub fn y0(x: f64) -> f64;
        /// Bessel function of the second kind, order one.
        pub fn y1(x: f64) -> f64;
        /// Bessel function of the second kind, integer order.
        pub fn yn(n: i32, x: f64) -> f64;
        /// Bessel function of the second kind, real order.
        pub fn yv(v: f64, x: f64) -> f64;

        /// Modified Bessel function of order zero.
        pub fn i0(x: f64) -> f64;
        /// Modified Bessel function of order zero, exponentially scaled.
        pub fn i0e(x: f64) -> f64;
        /// Modified Bessel function of order one.
        pub fn i1(x: f64) -> f64;
        /// Modified Bessel function of order one, exponentially scaled.
        pub fn i1e(x: f64) -> f64;
        /// Modified Bessel function of real order.
        pub fn iv(v: f64, x: f64) -> f64;

        /// Modified Bessel function of the third kind, order zero.
        pub fn k0(x: f64) -> f64;
        /// Modified Bessel function of the third kind, order zero,
        /// exponentially scaled.
        pub fn k0e(x: f64) -> f64;
        /// Modified Bessel function of the third kind, order one.
        pub fn k1(x: f64) -> f64;
        /// Modified Bessel function of the third kind, order one,
        /// exponentially scaled.
        pub fn k1e(x: f64) -> f64;
        /// Modified Bessel function of the third kind, integer order.
        pub fn kn(n: i32, x: f64) -> f64;

        // Elliptic functions
        /// Incomplete elliptic integral of the first kind.
        pub fn ellik(phi: f64, m: f64) -> f64;
        /// Incomplete elliptic integral of the second kind.
        pub fn ellie(phi: f64, m: f64) -> f64;
        /// Complete elliptic integral of the first kind.
        pub fn ellpk(m1: f64) -> f64;
        /// Complete elliptic integral of the second kind.
        pub fn ellpe(m1: f64) -> f64;
        /// Jacobian elliptic function.
        pub fn ellpj(u: f64, m: f64, sn: &mut f64, cn: &mut f64, dn: &mut f64, phi: &mut f64) -> i32;

        // Hypergeometric functions
        /// Confluent hypergeometric function 1F1.
        pub fn hyperg(a: f64, b: f64, x: f64) -> f64;
        /// Hypergeometric function 1F2.
        pub fn onef2(a: f64, b: f64, c: f64, x: f64, err: &mut f64) -> f64;
        /// Gauss hypergeometric function 2F1.
        pub fn hyp2f1(a: f64, b: f64, c: f64, x: f64) -> f64;
        /// Hypergeometric function 3F0.
        pub fn threef0(a: f64, b: f64, c: f64, x: f64, err: &mut f64) -> f64;

        // Distributions
        /// Binomial distribution.
        pub fn bdtr(k: i32, n: i32, p: f64) -> f64;
        /// Complemented binomial distribution.
        pub fn bdtrc(k: i32, n: i32, p: f64) -> f64;
        /// Inverse of binomial distribution.
        pub fn bdtri(k: i32, n: i32, y: f64) -> f64;

        /// Negative binomial distribution.
        pub fn nbdtr(k: i32, n: i32, p: f64) -> f64;
        /// Complemented negative binomial distribution.
        pub fn nbdtrc(k: i32, n: i32, p: f64) -> f64;
        /// Inverse of negative binomial distribution.
        pub fn nbdtri(k: i32, n: i32, p: f64) -> f64;

        /// Beta distribution.
        pub fn btdtr(a: f64, b: f64, x: f64) -> f64;

        /// Chi-square distribution.
        pub fn chdtr(df: f64, x: f64) -> f64;
        /// Complemented chi-square distribution.
        pub fn chdtrc(v: f64, x: f64) -> f64;
        /// Inverse of complemented chi-square distribution.
        pub fn chdtri(df: f64, y: f64) -> f64;

        /// F distribution.
        pub fn fdtr(df1: i32, df2: i32, x: f64) -> f64;
        /// Complemented F distribution.
        pub fn fdtrc(df1: i32, df2: i32, x: f64) -> f64;
        /// Inverse of complemented F distribution.
        pub fn fdtri(df1: i32, df2: i32, p: f64) -> f64;

        /// Gamma distribution.
        pub fn gdtr(a: f64, b: f64, x: f64) -> f64;
        /// Complemented gamma distribution.
        pub fn gdtrc(a: f64, b: f64, x: f64) -> f64;

        /// Normal distribution.
        pub fn ndtr(x: f64) -> f64;
        /// Inverse of normal distribution.
        pub fn ndtri(y: f64) -> f64;

        /// Poisson distribution.
        pub fn pdtr(k: i32, m: f64) -> f64;
        /// Complemented Poisson distribution.
        pub fn pdtrc(k: i32, m: f64) -> f64;
        /// Inverse of Poisson distribution.
        pub fn pdtri(k: i32, y: f64) -> f64;

        /// Student's t distribution.
        pub fn stdtr(k: i16, t: f64) -> f64;
        /// Inverse of Student's t distribution.
        pub fn stdtri(k: i32, p: f64) -> f64;

        // Misc special functions
        /// Airy function.
        pub fn airy(x: f64, ai: &mut f64, aip: &mut f64, bi: &mut f64, bip: &mut f64) -> i32;
        /// Dawson's integral.
        pub fn dawsn(x: f64) -> f64;
        /// Fresnel integral.
        pub fn fresnl(x: f64, s: &mut f64, c: &mut f64);
        /// Integral of Planck's black body radiation formula.
        pub fn plancki(lambda: f64, temperature: f64) -> f64;
        /// Struve function.
        pub fn struve(v: f64, x: f64) -> f64;
        /// Riemann zeta function.
        pub fn zetac(x: f64) -> f64;
        /// Riemann zeta function of two arguments.
        pub fn zeta(x: f64, q: f64) -> f64;
    }
}

/// High-level bindings to double-precision Cephes functions.
///
/// This provides safe access to a subset of the Cephes functions.
pub mod cephes_double {
    use unsafe_cephes_double;

    /// Function to compute the base-10 exponential of x
    ///
    /// # Original Description from Stephen L. Moshier
    /// Returns 10 raised to the x power.
    ///
    /// Range reduction is accomplished by expressing the argument
    /// as 10^x = 2^n 10^f, with |f| < 0.5 log10(2).
    /// The Pade' form
    ///
    /// 10^x = 1 + 2x P( x^2)/( Q( x^2 ) - P( x^2 ) )
    ///
    /// is used to approximate 10^f.
    ///
    /// ACCURACY (Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :-------: | :---: | :--: |
    /// | IEEE       | -307,+307 | 30000 | 2.2e-16 | 5.5e-17 |
    ///
    /// ERROR MESSAGES:
    ///
    /// | message | condition | value returned |
    /// | :-----: | :-------: | :------------: |
    /// | exp10 underflow | x < -MAXL10 | 0.0  |
    /// | exp10 overflow | x > MAXL10 | MAXNUM |
    ///
    /// IEEE arithmetic: MAXL10 = 308.2547155599167.
    ///
    ///
    /// # Arguments
    /// * `x`: A double precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::exp10;
    /// let x = 1.0f64;
    /// exp10(x);
    /// ```
    pub fn exp10(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::exp10(x) }
    }

    /// Function to accurately compute `exp(x) - 1` for small x
    ///
    /// # Arguments
    /// * `x`: A double precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::expm1;
    /// let x = 1.0f64;
    /// expm1(x);
    /// ```
    pub fn expm1(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::expm1(x) }
    }

    /// Function to accurately compute the exponential of a squared argument
    ///
    /// # Original Description from Stephen L. Moshier
    ///
    /// Computes y = exp(x*x) while suppressing error amplification
    /// that would ordinarily arise from the inexactness of the
    /// exponential argument x*x.
    ///
    /// If sign < 0, the result is inverted; i.e., y = exp(-x*x) .
    ///
    /// ACCURACY (Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :------: | :--: | :--:|
    /// | IEEE | -26.6, 26.6 | 10^7 | 3.9e-16 | 8.9e-17 |
    ///
    /// # Arguments
    /// * `x`: A double precision number
    /// * 'sign': An integer representing the sign of the exponent
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::expx2;
    /// let x = 1.0f64;
    /// expx2(x, -1);
    /// ```
    pub fn expx2(x: f64, sign: i32) -> f64 {
        unsafe { unsafe_cephes_double::expx2(x, sign) }
    }

    /// Function to accurately compute the exponential integral of x
    ///
    /// The exponential integral is given by:
    ///
    /// $Ei(x) = -\int^{\infty}_{-x} \frac{e^{-t}}{t} dt$
    ///
    /// # Original Description from Stephen L. Moshier
    ///
    /// ACCURACY (Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :------: | :--: | :--:|
    /// | IEEE | 0, 100 | 50000 | 8.6e-16 | 1.3e-16 |
    ///
    /// # Arguments
    /// * `x`: A double precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::ei;
    /// let x = 1.0f64;
    /// ei(x);
    /// ```
    pub fn ei(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::ei(x) }
    }

    /// Function to accurately compute the error function of x
    ///
    /// The error function is given by:
    ///
    /// $Erf(x) = \frac{2}{\sqrt{pi}} -\int^{x}_{0} e^{-t^2} dt$
    ///
    /// # Arguments
    /// * `x`: A double precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::erf;
    /// let x = 1.0f64;
    /// erf(x);
    /// ```
    pub fn erf(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::erf(x) }
    }

    /// Function to accurately compute the complementary error function of x
    ///
    /// The error function is given by:
    ///
    /// $Erf(x) = 1 + \frac{2}{\sqrt{pi}} -\int^{x}_{0} e^{-t^2} dt$
    ///
    /// # Arguments
    /// * `x`: A double precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::erfc;
    /// let x = 1.0f64;
    /// erfc(x);
    /// ```
    pub fn erfc(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::erfc(x) }
    }

    /// Function to accurately compute `log(1 + x)`
    ///
    /// # Arguments
    /// * `x`: A double precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::log1p;
    /// let x = 0.1f64;
    /// log1p(x);
    /// ```
    pub fn log1p(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::log1p(x) }
    }

    /// Function to accurately compute the dilogarithm function
    ///
    /// Spence's function is a special case of the polylogarithm function, and
    /// is defined as:
    ///
    /// $ Li_2(x) = \int^x_1 \frac{ln(t)}{t - 1} du
    ///
    /// Note, this implies that the domain has been shifted by 1 from the
    /// standard definition (as per wikipedia) of:
    ///
    /// $ Li_2(x) = - \int^x_0 \frac{ ln(1 - t) }{ t } dt
    ///
    /// # Original Description from Stephen L. Moshier
    /// Computes the integral for x >= 0.  A rational approximation gives the
    /// integral in the interval (0.5, 1.5).  Transformation formulas for 1/x
    /// and 1-x are employed outside the basic expansion range.
    ///
    /// ACCURACY(Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :---: | :--: | :--: | :--: | :--: | :--: |
    /// | IEEE  | 0,4 | 30000 | 3.9e-15 | 5.4e-16 |
    ///
    /// # Arguments
    /// * `x`: A double precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::spence;
    /// let x = 0.1f64;
    /// spence(x);
    /// ```
    pub fn spence(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::spence(x) }
    }

    /// Function to accurately compute `cos(x) - 1` for small x
    ///
    /// # Arguments
    /// * `x`: A double precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::cosm1;
    /// let x = 0.1f64;
    /// cosm1(x);
    /// ```
    pub fn cosm1(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::cosm1(x) }
    }

    /// Function to accurately compute sine and cosine integrals
    ///
    /// The sine integral is defined as:
    ///
    /// $ Si(x) = \int_0^{\infty} \frac{ sin(t) }{t} dt $
    ///
    /// and the cosine integral is defined as:
    ///
    /// $ Ci(x) = -\int_x^{\infty} \frac{ cos(t) }{t} dt $
    ///
    /// which reduces to:
    ///
    /// $ Ci(x) = \gamma + ln(x) + \int_0^x \frac{cos(t) - 1}{t} dt $
    ///
    /// where $\gamma$ is the euler constant.
    ///
    /// # Original Description from Stephen L. Moshier
    /// The integrals are approximated by rational functions.
    /// For x > 8 auxiliary functions f(x) and g(x) are employed
    /// such that
    ///
    /// Ci(x) = f(x) sin(x) - g(x) cos(x)
    /// Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
    ///
    /// ACCURACY(Absolute error, except relative when > 1):
    ///
    /// | arithmetic | Function | domain | # trials | peak | rms |
    /// | :---: | :--: | :--: | :--: | :--: | :--: | :--: |
    /// | IEEE | Si | 0,50 | 30000 | 4.4e-16 | 7.3e-17 |
    /// | IEEE | Ci | 0,50 | 30000 | 6.9e-16 | 5.1e-17 |
    ///
    /// # Arguments
    /// * `x`: A double precision number
    /// * `Si`: A mutable double precision number that will return the sine
    ///         integral value
    /// * `Ci`: A mutable double precision number that will return the cosine
    ///         integral value
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::sici;
    /// let x = 0.1f64;
    /// let mut si = 0.0_f64;
    /// let mut ci = 0.0_f64;
    /// let mut code = 0.0_f64;
    /// sici(0.5_f64, &mut si, &mut ci);
    /// ```
    pub fn sici(x: f64, si: &mut f64, ci: &mut f64) {
        let code = unsafe { unsafe_cephes_double::sici(x, si, ci) };
        assert_eq!(code, 0);
    }

    /// Function to accurately compute hyperbolic sine and cosine integrals
    ///
    /// The hyperbolic sine integral is defined as:
    ///
    /// $ Shi(x) = \int_0^{\infty} \frac{ sinh(t) }{t} dt $
    ///
    /// and the hyperbolic cosine integral is defined as:
    ///
    /// $ Chi(x) = -\int_x^{\infty} \frac{ cosh(t) }{t} dt $
    ///
    /// which reduces to:
    ///
    /// $ Chi(x) = \gamma + ln(x) + \int_0^x \frac{cosh(t) - 1}{t} dt $
    ///
    /// where $\gamma$ is the euler constant.
    ///
    /// # Original Description from Stephen L. Moshier
    /// The integrals are approximated by rational functions.
    /// For x > 8 auxiliary functions f(x) and g(x) are employed
    /// such that
    ///
    /// Ci(x) = f(x) sin(x) - g(x) cos(x)
    /// Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
    ///
    /// ACCURACY(Relative error)):
    ///
    /// | arithmetic | Function | domain | # trials | peak | rms |
    /// | :---: | :--: | :--: | :--: | :--: | :--: | :--: |
    /// | IEEE | Shi | 0,88 | 30000 | 6.9-16 | 1.6e-16 |
    ///
    /// ACCURACY(Absolute error, except relative when |Chi| > 1):
    ///
    /// | arithmetic | Function | domain | # trials | peak | rms |
    /// | :---: | :--: | :--: | :--: | :--: | :--: | :--: |
    /// | IEEE | Chi | 0,88 | 30000 | 8.4e-16 | 1.4e-16 |
    ///
    /// # Arguments
    /// * `x`: A double precision number
    /// * `Shi`: A mutable double precision number that will return the
    ///          hyperbolic sine integral value
    /// * `Chi`: A mutable double precision number that will return the
    ///          hyperbolic cosine integral value
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::shichi;
    /// let x = 0.1f64;
    /// let mut shi = 0.0_f64;
    /// let mut chi = 0.0_f64;
    /// shichi(0.5_f64, &mut shi, &mut chi);
    /// ```
    pub fn shichi(x: f64, chi: &mut f64, shi: &mut f64){
        let code = unsafe { unsafe_cephes_double::shichi(x, chi, shi) };
        assert_eq!(code, 0);
    }

    /// Function to compute the beta function.
    ///
    /// The beta function is given by:
    ///
    /// $B(a, b) = \int_0^1 t^{a - 1} ( 1 - t )^{b - 1} dt $
    ///
    /// which simplifies to
    ///
    /// $ B(a, b) = \frac{ \Gamma(a) \Gamma(b)}{ \Gamma(a + b) } $
    ///
    /// # Original Description from Stephen L. Moshier
    /// For large arguments the logarithm of the function is
    /// evaluated using lgam(), then exponentiated.
    ///
    /// ACCURACY (Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :------: | :--: | :-: |
    /// | IEEE       | 0,30   | 30000    | 8.1e-14 | 1.1e-14 |
    ///
    /// ERROR MESSAGES:
    ///
    /// | message   | condition | value returned |
    /// | :-------: | :--------: | :----------: |
    /// | beta overflow | log(beta) > MAXLOG | 0.0 |
    /// | beta overflow | a or b <0 integer      | 0.0 |
    ///
    /// # Arguments
    /// * `a`: A double precision parameter, assumed to be greater than 0
    /// * `b`: A double precision parameter, assumed to be greater than 0
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::beta;
    /// let a = 0.1f64;
    /// let b = 0.2f64;
    /// beta(a, b);
    /// ```
    pub fn beta(a: f64, b: f64) -> f64 {
        unsafe { unsafe_cephes_double::beta(a, b) }
    }

    /// Function to compute the regularized incomplete beta function.
    ///
    /// The regularized incomplete beta function is given by:
    ///
    /// $I_x(a, b) = \frac{1}{B(a, b)} \int_0^x t^{a - 1} ( 1 - t )^{b - 1} dt $
    ///
    /// and for $x = 1$, the regularized incomplete beta function evaluates to
    /// exactly 1. Note, $ 1 - I_x(a, b) = I_{1 - x}(a, b)$.
    ///
    /// # Original Description from Stephen L. Moshier
    /// The integral is evaluated by a continued fraction expansion
    /// or, when b*x is small, by a power series.
    ///
    /// ACCURACY (Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :------: | :--: | :-: |
    /// | IEEE       | 0,5    | 10000    | 6.9e-15 | 4.5e-16 |
    /// | IEEE | 0,85 | 250000 | 2.2e-13 | 1.7e-14 |
    /// | IEEE | 0,1000   |  30000  |  5.3e-12 | 6.3e-13 |
    /// | IEEE | 0,10000  | 250000  |  9.3e-11 | 7.1e-12 |
    /// | IEEE | 0,100000 |  10000  |  8.7e-10 | 4.8e-11 |
    ///
    /// ERROR MESSAGES:
    ///
    /// | message   | condition | value returned |
    /// | :-------: | :--------: | :----------: |
    /// | incbet domain | x<0, x>1 | 0.0 |
    /// | incbet underflow | - | 0.0 |
    ///
    /// # Arguments
    /// * `a`: A double precision parameter, assumed to be greater than 0
    /// * `b`: A double precision parameter, assumed to be greater than 0
    /// * `x`: A double precision parameter, assumed to be between 0 and 1
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_double::incbet;
    /// let a = 0.1f64;
    /// let b = 0.2f64;
    /// incbet(a, b, 0.5f64);
    /// ```
    pub fn incbet(a: f64, b: f64, x: f64) -> f64 {
        unsafe { unsafe_cephes_double::incbet(a, b, x) }
    }

    /// Inverse of incomplete beta integral.
    pub fn incbi(a: f64, b: f64, y: f64) -> f64 {
        unsafe { unsafe_cephes_double::incbi(a, b, y) }
    }

    /// Gamma function.
    pub fn gamma(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::gamma(x) }
    }

    /// Reciprocal gamma function.
    pub fn rgamma(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::rgamma(x) }
    }

    /// Natural logarithm of gamma function.
    pub fn lgam(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::lgam(x) }
    }

    /// Regularized incomplete gamma integral.
    pub fn igam(a: f64, x: f64) -> f64 {
        unsafe { unsafe_cephes_double::igam(a, x) }
    }

    /// Complemented incomplete gamma integral.
    pub fn igamc(a: f64, x: f64) -> f64 {
        unsafe { unsafe_cephes_double::igamc(a, x) }
    }

    /// Inverse of complemented incomplete gamma integral.
    pub fn igami(a: f64, p: f64) -> f64 {
        unsafe { unsafe_cephes_double::igami(a, p) }
    }

    /// Psi (digamma) function.
    pub fn psi(x: f64) -> f64 {
        unsafe { unsafe_cephes_double::psi(x) }
    }

    /// Factorial function.
    pub fn fac(i: i32) -> f64 {
        unsafe { unsafe_cephes_double::fac(i) }
    }
}

/// Low-level bindings to single-precision Cephes functions.
///
/// This provides access to the C function implemented in Cephes for maximum
/// flexibility. Note that Cephes implements less functions for single than for
/// double precision.
#[allow(dead_code)]
pub mod unsafe_cephes_single {
    extern "C" {
        // Floating point numeric utilities
        /// Round to nearest or event integer valued f32.
        pub fn roundf(x: f32) -> f32;
        /// Largest integer less than or equal to x.
        pub fn floorf(x: f32) -> f32;
        /// Smallest integer greater than or equal to x.
        pub fn ceilf(x: f32) -> f32;
        /// Return the significand between 0.5 and 1. Write exponent to expnt.
        /// x = y * 2**expn
        pub fn frexpf(x: f32, expnt: &mut i32) -> f32;
        /// Multiply x by 2**n.
        pub fn ldexpf(x: f32, n: i32) -> f32;
        /// Absolute value.
        pub fn fabsf(x: f32) -> f32;
        /// Return 1 if the sign bit of x is 1, else 0.
        pub fn signbitf(x: f32) -> i32;
        /// Return 1 if x is NaN, else 0.
        pub fn isnanf(x: f32) -> i32;
        /// Return 1 if x is finite, else 0.
        pub fn isfinitef(x: f32) -> i32;

        // Roots
        /// Cube root.
        pub fn cbrtf(x: f32) -> f32;
        /// Square root.
        pub fn sqrtf(x: f32) -> f32;
        /// Integer square root.
        pub fn lsqrtf(x: i64) -> i64;

        // Exponential functions
        /// Exponential function.
        pub fn expf(x: f32) -> f32;
        /// Base 10 exponential function.
        pub fn exp10f(x: f32) -> f32;
        /// Base 2 exponential function.
        pub fn exp2f(x: f32) -> f32;
        /// Compute accurately exponential of squared argument.
        pub fn expm1f(x: f32) -> f32;
        /// Compute accurately exp(x) - 1 for x close to 0.
        pub fn expx2f(x: f32, sign: i32) -> f32;
        /// Error function.
        pub fn erff(x: f32) -> f32;
        /// Complementary error function.
        pub fn erfcf(x: f32) -> f32;
        /// Power function.
        pub fn powf(x: f32, y: f32) -> f32;
        /// Integer power function.
        pub fn powif(x: f32, n: i32) -> f32;

        // Logarithmic functions
        /// Natural logarithm.
        pub fn logf(x: f32) -> f32;
        /// Common logarithm.
        pub fn log10f(x: f32) -> f32;
        /// Base 2 logarithm.
        pub fn log2f(x: f32) -> f32;
        /// Compute accurately log(1 + x) for x close to 0.
        pub fn log1pf(x: f32) -> f32;
        /// Dilogarithm (Spence's function).
        pub fn spencef(x: f32) -> f32;

        // Trigonometric functions
        /// Circular sine.
        pub fn sinf(x: f32) -> f32;
        /// Circular cosine.
        pub fn cosf(x: f32) -> f32;
        /// Circular tangent.
        pub fn tanf(x: f32) -> f32;
        /// Inverse circular sine.
        pub fn asinf(x: f32) -> f32;
        /// Inverse circular cosine.
        pub fn acosf(x: f32) -> f32;
        /// Inverse circular tangent.
        pub fn atanf(x: f32) -> f32;
        /// Quadrant-correct inverse circular tangent.
        pub fn atan2f(y: f32, x: f32) -> f32;
        /// Sine and cosine integrals.
        pub fn sicif(x: f32, si: &mut f32, ci: &mut f32) -> i32;

        // Hyperbolic functions
        /// Hyperbolic sine.
        pub fn sinhf(x: f32) -> f32;
        /// Hyperbolic cosine.
        pub fn coshf(x: f32) -> f32;
        /// Hyperbolic tangent.
        pub fn tanhf(x: f32) -> f32;
        /// Inverse hyperbolic sine.
        pub fn asinhf(x: f32) -> f32;
        /// Inverse hyperbolic cosine.
        pub fn acoshf(x: f32) -> f32;
        /// Inverse hyperbolic tangent.
        pub fn atanhf(x: f32) -> f32;
        /// Hyperbolic sine and cosine integrals.
        pub fn shichif(x: f32, chi: &mut f32, shi: &mut f32) -> i32;

        // Beta functions
        /// Beta function.
        pub fn betaf(a: f32, b: f32) -> f32;
        /// Regularized incomplete beta function.
        pub fn incbetf(a: f32, b: f32, x: f32) -> f32;
        /// Inverse of incomplete beta integral.
        pub fn incbif(a: f32, b: f32, y: f32) -> f32;

        // Gamma functions
        /// Gamma function.
        pub fn gammaf(x: f32) -> f32;
        /// Reciprocal gamma function.
        pub fn rgammaf(x: f32) -> f32;
        /// Natural logarithm of gamma function.
        pub fn lgamf(x: f32) -> f32;
        /// Regularized incomplete gamma integral.
        pub fn igamf(a: f32, x: f32) -> f32;
        /// Complemented incomplete gamma integral.
        pub fn igamcf(a: f32, x: f32) -> f32;
        /// Inverse of complemented incomplete gamma integral.
        pub fn igamif(a: f32, p: f32) -> f32;
        /// Psi (digamma) function.
        pub fn psif(x: f32) -> f32;
        /// Factorial function.
        pub fn facf(i: i32) -> f32;

        // Bessel functions
        /// Bessel function of order zero.
        pub fn j0f(x: f32) -> f32;
        /// Bessel function of order one.
        pub fn j1f(x: f32) -> f32;
        /// Bessel function of integer order.
        pub fn jnf(n: i32, x: f32) -> f32;
        /// Bessel function of real order.
        pub fn jvf(n: f32, x: f32) -> f32;

        /// Bessel function of the second kind, order zero.
        pub fn y0f(x: f32) -> f32;
        /// Bessel function of the second kind, order one.
        pub fn y1f(x: f32) -> f32;
        /// Bessel function of the second kind, integer order.
        pub fn ynf(n: i32, x: f32) -> f32;
        /// Bessel function of the second kind, real order.
        pub fn yvf(v: f32, x: f32) -> f32;

        /// Modified Bessel function of order zero.
        pub fn i0f(x: f32) -> f32;
        /// Modified Bessel function of order zero, exponentially scaled.
        pub fn i0ef(x: f32) -> f32;
        /// Modified Bessel function of order one.
        pub fn i1f(x: f32) -> f32;
        /// Modified Bessel function of order one, exponentially scaled.
        pub fn i1ef(x: f32) -> f32;
        /// Modified Bessel function of real order.
        pub fn ivf(v: f32, x: f32) -> f32;

        /// Modified Bessel function of the third kind, order zero.
        pub fn k0f(x: f32) -> f32;
        /// Modified Bessel function of the third kind, order zero,
        /// exponentially scaled.
        pub fn k0ef(x: f32) -> f32;
        /// Modified Bessel function of the third kind, order one.
        pub fn k1f(x: f32) -> f32;
        /// Modified Bessel function of the third kind, order one,
        /// exponentially scaled.
        pub fn k1ef(x: f32) -> f32;
        /// Modified Bessel function of the third kind, integer order.
        pub fn knf(n: i32, x: f32) -> f32;

        // Elliptic functions
        /// Incomplete elliptic integral of the first kind.
        pub fn ellikf(phi: f32, m: f32) -> f32;
        /// Incomplete elliptic integral of the second kind.
        pub fn ellief(phi: f32, m: f32) -> f32;
        /// Complete elliptic integral of the first kind.
        pub fn ellpkf(m1: f32) -> f32;
        /// Complete elliptic integral of the second kind.
        pub fn ellpef(m1: f32) -> f32;
        /// Jacobian elliptic function.
        pub fn ellpjf(u: f32, m: f32, sn: &mut f32, cn: &mut f32, dn: &mut f32, phi: &mut f32) -> i32;

        // Hypergeometric functions
        /// Confluent hypergeometric function 1F1.
        pub fn hypergf(a: f32, b: f32, x: f32) -> f32;
        /// Hypergeometric function 1F2.
        pub fn onef2f(a: f32, b: f32, c: f32, x: f32, err: &mut f32) -> f32;
        /// Gauss hypergeometric function 2F1.
        pub fn hyp2f1f(a: f32, b: f32, c: f32, x: f32) -> f32;
        /// Hypergeometric function 3F0.
        pub fn threef0f(a: f32, b: f32, c: f32, x: f32, err: &mut f32) -> f32;

        // Distributions
        /// Binomial distribution.
        pub fn bdtrf(k: i32, n: i32, p: f32) -> f32;
        /// Complemented binomial distribution.
        pub fn bdtrcf(k: i32, n: i32, p: f32) -> f32;
        /// Inverse of binomial distribution.
        pub fn bdtrif(k: i32, n: i32, y: f32) -> f32;

        /// Negative binomial distribution.
        pub fn nbdtrf(k: i32, n: i32, p: f32) -> f32;
        /// Complemented negative binomial distribution.
        pub fn nbdtrcf(k: i32, n: i32, p: f32) -> f32;
        /// Inverse of negative binomial distribution.
        pub fn nbdtrif(k: i32, n: i32, p: f32) -> f32;

        /// Beta distribution.
        pub fn btdtrf(a: f32, b: f32, x: f32) -> f32;

        /// Chi-square distribution.
        pub fn chdtrf(df: f32, x: f32) -> f32;
        /// Complemented chi-square distribution.
        pub fn chdtrcf(v: f32, x: f32) -> f32;
        /// Inverse of complemented chi-square distribution.
        pub fn chdtrif(df: f32, y: f32) -> f32;

        /// F distribution.
        pub fn fdtrf(df1: i32, df2: i32, x: f32) -> f32;
        /// Complemented F distribution.
        pub fn fdtrcf(df1: i32, df2: i32, x: f32) -> f32;
        /// Inverse of complemented F distribution.
        pub fn fdtrif(df1: i32, df2: i32, p: f32) -> f32;

        /// Gamma distribution.
        pub fn gdtrf(a: f32, b: f32, x: f32) -> f32;
        /// Complemented gamma distribution.
        pub fn gdtrcf(a: f32, b: f32, x: f32) -> f32;

        /// Normal distribution.
        pub fn ndtrf(x: f32) -> f32;
        /// Inverse of normal distribution.
        pub fn ndtrif(y: f32) -> f32;

        /// Poisson distribution.
        pub fn pdtrf(k: i32, m: f32) -> f32;
        /// Complemented Poisson distribution.
        pub fn pdtrcf(k: i32, m: f32) -> f32;
        /// Inverse of Poisson distribution.
        pub fn pdtrif(k: i32, y: f32) -> f32;

        /// Student's t distribution.
        pub fn stdtrf(k: i16, t: f32) -> f32;
        /// Inverse of Student's t distribution.
        pub fn stdtrif(k: i32, p: f32) -> f32;

        // Misc special functions
        /// Airy function.
        pub fn airyf(x: f32, ai: &mut f32, aip: &mut f32, bi: &mut f32, bip: &mut f32) -> i32;
        /// Dawson's integral.
        pub fn dawsnf(x: f32) -> f32;
        /// Fresnel integral.
        pub fn fresnlf(x: f32, s: &mut f32, c: &mut f32);
        /// Integral of Planck's black body radiation formula.
        pub fn planckif(lambda: f32, temperature: f32) -> f32;
        /// Struve function.
        pub fn struvef(v: f32, x: f32) -> f32;
        /// Riemann zeta function.
        pub fn zetacf(x: f32) -> f32;
        /// Riemann zeta function of two arguments.
        pub fn zetaf(x: f32, q: f32) -> f32;
    }
}

/// High-level bindings to single-precision Cephes functions.
///
/// This provides safe access to a subset of the Cephes functions. Note that
/// Cephes implements less functions for single than for double precision.
pub mod cephes_single {
    use unsafe_cephes_single;

    /// Function to compute the base-10 exponential of x
    ///
    /// # Original Description from Stephen L. Moshier
    /// Returns 10 raised to the x power.
    ///
    /// Range reduction is accomplished by expressing the argument
    /// as 10^x = 2^n 10^f, with |f| < 0.5 log10(2).
    /// The Pade' form
    ///
    /// 10^x = 1 + 2x P( x^2)/( Q( x^2 ) - P( x^2 ) )
    ///
    /// is used to approximate 10^f.
    ///
    /// ACCURACY (Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :-------: | :---: | :--: |
    /// | IEEE       | -38,+38 | 100000 | 9.8e-8 | 2.8e-8 |
    ///
    /// ERROR MESSAGES:
    ///
    /// | message | condition | value returned |
    /// | :-----: | :-------: | :------------: |
    /// | exp10 underflow | x < -MAXL10 | 0.0  |
    /// | exp10 overflow | x > MAXL10 | MAXNUM |
    ///
    /// IEEE single arithmetic: MAXL10 = 38.230809449325611792.
    ///
    ///
    /// # Arguments
    /// * `x`: A single precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::exp10;
    /// let x = 1.0f32;
    /// exp10(x);
    /// ```
    pub fn exp10(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::exp10f(x) }
    }

    /// Function to accurately compute `exp(x) - 1` for small x
    ///
    /// # Arguments
    /// * `x`: A single precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::expm1;
    /// let x = 1.0f32;
    /// expm1(x);
    /// ```
    pub fn expm1(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::expm1f(x) }
    }

    /// Function to accurately compute the exponential of a squared argument
    ///
    /// # Original Description from Stephen L. Moshier
    ///
    /// Computes y = exp(x*x) while suppressing error amplification
    /// that would ordinarily arise from the inexactness of the
    /// exponential argument x*x.
    ///
    /// If sign < 0, the result is inverted; i.e., y = exp(-x*x) .
    ///
    /// ACCURACY (Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :------: | :--: | :--:|
    /// | IEEE | -9.4, 9.4 | 10^7 | 1.7e-7 | 4.7e-8 |
    ///
    /// # Arguments
    /// * `x`: A single precision number
    /// * `sign`: An integer representing the sign of the exponent
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::expx2;
    /// let x = 1.0f32;
    /// expx2(x, -1);
    /// ```
    pub fn expx2(x: f32, sign: i32) -> f32 {
        unsafe { unsafe_cephes_single::expx2f(x, sign) }
    }

    /// Function to accurately compute the error function of x
    ///
    /// The error function is given by:
    ///
    /// $Erf(x) = \frac{2}{\sqrt{pi}} -\int^{x}_{0} e^{-t^2} dt$
    ///
    /// # Arguments
    /// * `x`: A single precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::erf;
    /// let x = 1.0f32;
    /// erf(x);
    /// ```
    pub fn erf(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::erff(x) }
    }

    /// Function to accurately compute the complementary error function of x
    ///
    /// The error function is given by:
    ///
    /// $Erf(x) = 1 + \frac{2}{\sqrt{pi}} -\int^{x}_{0} e^{-t^2} dt$
    ///
    /// # Arguments
    /// * `x`: A single precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::erfc;
    /// let x = 1.0f32;
    /// erfc(x);
    /// ```
    pub fn erfc(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::erfcf(x) }
    }

    /// Function to accurately compute `log(1 + x)`
    ///
    /// # Arguments
    /// * `x`: A single precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::log1p;
    /// let x = 0.1f32;
    /// log1p(x);
    /// ```
    pub fn log1p(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::log1pf(x) }
    }

    /// Function to accurately compute the dilogarithm function
    ///
    /// Spence's function is a special case of the polylogarithm function, and
    /// is defined as:
    ///
    /// $ Li_2(x) = \int^x_1 \frac{ln(t)}{t - 1} du
    ///
    /// Note, this implies that the domain has been shifted by 1 from the
    /// standard definition (as per wikipedia) of:
    ///
    /// $ Li_2(x) = - \int^x_0 \frac{ ln(1 - t) }{ t } dt
    ///
    /// # Original Description from Stephen L. Moshier
    /// Computes the integral for x >= 0.  A rational approximation gives the
    /// integral in the interval (0.5, 1.5).  Transformation formulas for 1/x
    /// and 1-x are employed outside the basic expansion range.
    ///
    /// ACCURACY(Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :---: | :--: | :--: | :--: | :--: | :--: |
    /// | IEEE  | 0,4 | 30000 | 4.4e-7 | 6.3e-8 |
    ///
    /// # Arguments
    /// * `x`: A single precision number
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::spence;
    /// let x = 0.1f32;
    /// spence(x);
    /// ```
    pub fn spence(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::spencef(x) }
    }

    /// Function to accurately compute sine and cosine integrals
    ///
    /// The sine integral is defined as:
    ///
    /// $ Si(x) = \int_0^{\infty} \frac{ sin(t) }{t} dt $
    ///
    /// and the cosine integral is defined as:
    ///
    /// $ Ci(x) = -\int_x^{\infty} \frac{ cos(t) }{t} dt $
    ///
    /// which reduces to:
    ///
    /// $ Ci(x) = \gamma + ln(x) + \int_0^x \frac{cos(t) - 1}{t} dt $
    ///
    /// where $\gamma$ is the euler constant.
    ///
    /// # Original Description from Stephen L. Moshier
    /// The integrals are approximated by rational functions.
    /// For x > 8 auxiliary functions f(x) and g(x) are employed
    /// such that
    ///
    /// Ci(x) = f(x) sin(x) - g(x) cos(x)
    /// Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
    ///
    /// ACCURACY(Absolute error, except relative when > 1):
    ///
    /// | arithmetic | Function | domain | # trials | peak | rms |
    /// | :---: | :--: | :--: | :--: | :--: | :--: | :--: |
    /// | IEEE | Si | 0,50 | 30000 | 2.1e-7 | 4.3e-8 |
    /// | IEEE | Ci | 0,50 | 30000 | 3.9e-7 | 2.2e-8 |
    ///
    /// # Arguments
    /// * `x`: A single precision number
    /// * `Si`: A mutable single precision number that will return the sine
    ///         integral value
    /// * `Ci`: A mutable single precision number that will return the cosine
    ///         integral value
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::sici;
    /// let x = 0.1f32;
    /// let mut si = 0.0_f32;
    /// let mut ci = 0.0_f32;
    /// sici(0.5_f32, &mut si, &mut ci);
    /// ```
    pub fn sici(x: f32, si: &mut f32, ci: &mut f32) {
        let code = unsafe { unsafe_cephes_single::sicif(x, si, ci) };
        assert_eq!(code, 0);
    }

    /// Function to accurately compute hyperbolic sine and cosine integrals
    ///
    /// The hyperbolic sine integral is defined as:
    ///
    /// $ Shi(x) = \int_0^{\infty} \frac{ sinh(t) }{t} dt $
    ///
    /// and the hyperbolic cosine integral is defined as:
    ///
    /// $ Chi(x) = -\int_x^{\infty} \frac{ cosh(t) }{t} dt $
    ///
    /// which reduces to:
    ///
    /// $ Chi(x) = \gamma + ln(x) + \int_0^x \frac{cosh(t) - 1}{t} dt $
    ///
    /// where $\gamma$ is the euler constant.
    ///
    /// # Original Description from Stephen L. Moshier
    /// The integrals are approximated by rational functions.
    /// For x > 8 auxiliary functions f(x) and g(x) are employed
    /// such that
    ///
    /// Ci(x) = f(x) sin(x) - g(x) cos(x)
    /// Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
    ///
    /// ACCURACY(Relative error)):
    ///
    /// | arithmetic | Function | domain | # trials | peak | rms |
    /// | :---: | :--: | :--: | :--: | :--: | :--: | :--: |
    /// | IEEE | Shi | 0,88 | 30000 | 3.5e-7 | 7.0e-8 |
    ///
    /// ACCURACY(Absolute error, except relative when |Chi| > 1):
    ///
    /// | arithmetic | Function | domain | # trials | peak | rms |
    /// | :---: | :--: | :--: | :--: | :--: | :--: | :--: |
    /// | IEEE | Chi | 0,88 | 30000 | 3.8e-7 | 7.6e-8 |
    ///
    /// # Arguments
    /// * `x`: A single precision number
    /// * `Shi`: A mutable single precision number that will return the
    ///          hyperbolic sine integral value
    /// * `Chi`: A mutable single precision number that will return the
    ///          hyperbolic cosine integral value
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::shichi;
    /// let x = 0.1f32;
    /// let mut shi = 0.0_f32;
    /// let mut chi = 0.0_f32;
    /// shichi(0.5_f32, &mut shi, &mut chi);
    /// ```
    pub fn shichi(x: f32, chi: &mut f32, shi: &mut f32){
        let code = unsafe { unsafe_cephes_single::shichif(x, chi, shi) };
        assert_eq!(code, 0);
    }

    /// Function to compute the beta function.
    ///
    /// The beta function is given by:
    ///
    /// $B(a, b) = \int_0^1 t^{a - 1} ( 1 - t )^{b - 1} dt $
    ///
    /// which simplifies to
    ///
    /// $ B(a, b) = \frac{ \Gamma(a) \Gamma(b)}{ \Gamma(a + b) } $
    ///
    /// # Original Description from Stephen L. Moshier
    /// For large arguments the logarithm of the function is
    /// evaluated using lgam(), then exponentiated.
    ///
    /// ACCURACY (Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :------: | :--: | :-: |
    /// | IEEE       | 0,30   | 10000    | 4.0e-5 | 6.0e-6 |
    /// | IEEE       | -20,0  | 10000    | 4.9e-3 | 5.4e-5 |
    ///
    /// ERROR MESSAGES:
    ///
    /// | message   | condition | value returned |
    /// | :-------: | :--------: | :----------: |
    /// | beta overflow | log(beta) > MAXLOG | 0.0 |
    /// | beta overflow | a or b <0 integer      | 0.0 |
    ///
    /// # Arguments
    /// * `a`: A single precision parameter, assumed to be greater than 0
    /// * `b`: A single precision parameter, assumed to be greater than 0
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::beta;
    /// let a = 0.1f32;
    /// let b = 0.2f32;
    /// beta(a, b);
    /// ```
    pub fn beta(a: f32, b: f32) -> f32 {
        unsafe { unsafe_cephes_single::betaf(a, b) }
    }

    /// Function to compute the regularized incomplete beta function.
    ///
    /// The regularized incomplete beta function is given by:
    ///
    /// $I_x(a, b) = \frac{1}{B(a, b)} \int_0^x t^{a - 1} ( 1 - t )^{b - 1} dt $
    ///
    /// and for $x = 1$, the regularized incomplete beta function evaluates to
    /// exactly 1. Note, $ 1 - I_x(a, b) = I_{1 - x}(a, b)$.
    ///
    /// # Original Description from Stephen L. Moshier
    /// The integral is evaluated by a continued fraction expansion
    /// or, when b*x is small, by a power series.
    ///
    /// ACCURACY (Relative error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :------: | :--: | :-: |
    /// | IEEE       | 0,30   | 10000    | 3.7e-5 | 5.1e-6 |
    /// | IEEE       | 0,100  | 10000    | 1.7e-4 | 2.5e-5 |
    ///
    /// The useful domain for relative error is limited by underflow of the
    /// single precision exponential function.
    ///
    /// ACCURACY (Absolute error):
    ///
    /// | arithmetic | domain | # trials | peak | rms |
    /// | :--------: | :----: | :------: | :--: | :-: |
    /// | IEEE       | 0,30   | 100000   | 2.2e-5 | 5.1e-6 |
    /// | IEEE       | 0,100  | 10000    | 6.5e-5 | 3.7e-6 |
    ///
    /// Larger errors may occur for extreme ratios of `a` and `b`.
    ///
    /// ERROR MESSAGES:
    ///
    /// | message   | condition | value returned |
    /// | :-------: | :--------: | :----------: |
    /// | incbet domain | x<0, x>1 | 0.0 |
    ///
    /// # Arguments
    /// * `a`: A single precision parameter, assumed to be greater than 0
    /// * `b`: A single precision parameter, assumed to be greater than 0
    /// * `x`: A single precision parameter, assumed to be between 0 and 1
    ///
    /// # Example
    /// ```
    /// use special_fun::cephes_single::incbet;
    /// let a = 0.1f32;
    /// let b = 0.2f32;
    /// incbet(a, b, 0.5f32);
    /// ```
    pub fn incbet(a: f32, b: f32, x: f32) -> f32 {
        unsafe { unsafe_cephes_single::incbetf(a, b, x) }
    }

    /// Inverse of incomplete beta integral.
    pub fn incbi(a: f32, b: f32, y: f32) -> f32 {
        unsafe { unsafe_cephes_single::incbif(a, b, y) }
    }

    /// Gamma function.
    pub fn gamma(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::gammaf(x) }
    }

    /// Reciprocal gamma function.
    pub fn rgamma(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::rgammaf(x) }
    }

    /// Natural logarithm of gamma function.
    pub fn lgam(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::lgamf(x) }
    }

    /// Regularized incomplete gamma integral.
    pub fn igam(a: f32, x: f32) -> f32 {
        unsafe { unsafe_cephes_single::igamf(a, x) }
    }

    /// Complemented incomplete gamma integral.
    pub fn igamc(a: f32, x: f32) -> f32 {
        unsafe { unsafe_cephes_single::igamcf(a, x) }
    }

    /// Inverse of complemented incomplete gamma integral.
    pub fn igami(a: f32, p: f32) -> f32 {
        unsafe { unsafe_cephes_single::igamif(a, p) }
    }

    /// Psi (digamma) function.
    pub fn psi(x: f32) -> f32 {
        unsafe { unsafe_cephes_single::psif(x) }
    }

    /// Factorial function.
    pub fn fac(i: i32) -> f32 {
        unsafe { unsafe_cephes_single::facf(i) }
    }
}

/// Special functions on primitive floating point numbers.
///
/// This provides safe access to a subset of the Cephes functions implemented
/// for double and single precision.
pub trait FloatSpecial: Copy + Add<Output=Self> + Sub<Output=Self> {
    /// Beta function.
    fn beta(self, b: Self) -> Self;
    /// Logarithm of beta function.
    fn logbeta(self, b: Self) -> Self {
        self.loggamma() + b.loggamma() - (self + b).loggamma()
    }
    /// Regularized incomplete beta function.
    fn betainc(self, a: Self, b: Self) -> Self;
    /// Inverse of incomplete beta integral.
    fn betainc_inv(self, a: Self, b: Self) -> Self;

    /// Factorial.
    fn factorial(self) -> Self;
    /// Gamma function.
    fn gamma(self) -> Self;
    /// Reciprocal gamma function.
    fn rgamma(self) -> Self;
    /// Logarithm of gamma function.
    fn loggamma(self) -> Self;

    /// Regularized incomplete gamma integral.
    fn gammainc(self, a: Self) -> Self;
    /// Complemented incomplete gamma integral.
    fn gammac(self, a: Self) -> Self;
    /// Inverse of complemented incomplete gamma integral.
    fn gammac_inv(self, a: Self) -> Self;

    /// Digamma function.
    fn digamma(self) -> Self;

    /// Error function.
    fn erf(self) -> Self;
    /// Complementary error function.
    fn erfc(self) -> Self;

    /// Confluent hypergeometric function 1F1.
    fn hyp1f1(self, a: Self, b: Self) -> Self;
    /// Hypergeometric function 1F2.
    fn hyp1f2(self, a: Self, b: Self, c: Self) -> Self;
    /// Gauss hypergeometric function 2F1.
    fn hyp2f1(self, a: Self, b: Self, c: Self) -> Self;
    /// Hypergeometric function 3F0.
    fn hyp3f0(self, a: Self, b: Self, c: Self) -> Self;

    /// Normal distribution function.
    fn norm(self) -> Self;
    /// Inverse of Normal distribution function.
    fn norm_inv(self) -> Self;

    /// Bessel function of real order of the first kind.
    fn besselj(self, v: Self) -> Self;
    /// Bessel function of real order of the second kind.
    fn bessely(self, v: Self) -> Self;
    /// Modified bessel function of real order of the first kind.
    fn besseli(self, v: Self) -> Self;
    /// Modified bessel function of integer order of the second kind.
    fn besselk(self, v: i32) -> Self;

    /// Riemann zeta function.
    fn riemann_zeta(self) -> Self;
    /// Hurwitz zeta function.
    fn hurwitz_zeta(self, q: Self) -> Self;
}

impl FloatSpecial for f64 {
    fn beta(self, b: f64) -> f64 {
        unsafe { unsafe_cephes_double::beta(self, b) }
    }
    fn betainc(self, a: f64, b: f64) -> f64 {
        unsafe { unsafe_cephes_double::incbet(a, b, self) }
    }
    fn betainc_inv(self, a: f64, b: f64) -> f64 {
        unsafe { unsafe_cephes_double::incbi(a, b, self) }
    }

    fn factorial(self) -> f64 {
        unsafe { unsafe_cephes_double::gamma(self + 1.0) }
    }
    fn gamma(self) -> f64 {
        unsafe { unsafe_cephes_double::gamma(self) }
    }
    fn rgamma(self) -> f64 {
        unsafe { unsafe_cephes_double::rgamma(self) }
    }
    fn loggamma(self) -> f64 {
        unsafe { unsafe_cephes_double::lgam(self) }
    }

    fn gammainc(self, a: f64) -> f64 {
        unsafe { unsafe_cephes_double::igam(a, self) }
    }
    fn gammac(self, a: f64) -> f64 {
        unsafe { unsafe_cephes_double::igamc(a, self) }
    }
    fn gammac_inv(self, a: f64) -> f64 {
        unsafe { unsafe_cephes_double::igami(a, self) }
    }

    fn digamma(self) -> f64 {
        unsafe { unsafe_cephes_double::psi(self) }
    }

    fn erf(self) -> f64 {
        unsafe { unsafe_cephes_double::erf(self) }
    }
    fn erfc(self) -> f64 {
        unsafe { unsafe_cephes_double::erfc(self) }
    }

    fn hyp1f1(self, a: f64, b: f64) -> f64 {
        unsafe { unsafe_cephes_double::hyperg(a, b, self) }
    }
    fn hyp1f2(self, a: f64, b: f64, c: f64) -> f64 {
        let mut err = 0.0;
        unsafe { unsafe_cephes_double::onef2(a, b, c, self, &mut err) }
    }
    fn hyp2f1(self, a: f64, b: f64, c: f64) -> f64 {
        unsafe { unsafe_cephes_double::hyp2f1(a, b, c, self) }
    }
    fn hyp3f0(self, a: f64, b: f64, c: f64) -> f64 {
        let mut err = 0.0;
        unsafe { unsafe_cephes_double::threef0(a, b, c, self, &mut err) }
    }

    fn norm(self) -> f64 {
        unsafe { unsafe_cephes_double::ndtr(self) }
    }
    fn norm_inv(self) -> f64 {
        unsafe { unsafe_cephes_double::ndtri(self) }
    }

    fn besselj(self, v: f64) -> f64 {
        unsafe { unsafe_cephes_double::jv(v, self) }
    }
    fn bessely(self, v: f64) -> f64 {
        unsafe { unsafe_cephes_double::yv(v, self) }
    }
    fn besseli(self, v: f64) -> f64 {
        unsafe { unsafe_cephes_double::iv(v, self) }
    }
    fn besselk(self, n: i32) -> f64 {
        unsafe { unsafe_cephes_double::kn(n, self) }
    }

    fn riemann_zeta(self) -> f64 {
        unsafe { 1.0 + unsafe_cephes_double::zetac(self) }
    }
    fn hurwitz_zeta(self, q: f64) -> f64 {
        unsafe { unsafe_cephes_double::zeta(self, q) }
    }
}

impl FloatSpecial for f32 {
    fn beta(self, b: f32) -> f32 {
        unsafe { unsafe_cephes_single::betaf(self, b) }
    }
    fn betainc(self, a: f32, b: f32) -> f32 {
        unsafe { unsafe_cephes_single::incbetf(a, b, self) }
    }
    fn betainc_inv(self, a: f32, b: f32) -> f32 {
        unsafe { unsafe_cephes_single::incbif(a, b, self) }
    }

    fn factorial(self) -> f32 {
        unsafe { unsafe_cephes_single::gammaf(self + 1.0) }
    }
    fn gamma(self) -> f32 {
        unsafe { unsafe_cephes_single::gammaf(self) }
    }
    fn rgamma(self) -> f32 {
        unsafe { unsafe_cephes_single::rgammaf(self) }
    }
    fn loggamma(self) -> f32 {
        unsafe { unsafe_cephes_single::lgamf(self) }
    }

    fn gammainc(self, a: f32) -> f32 {
        unsafe { unsafe_cephes_single::igamf(a, self) }
    }
    fn gammac(self, a: f32) -> f32 {
        unsafe { unsafe_cephes_single::igamcf(a, self) }
    }
    fn gammac_inv(self, a: f32) -> f32 {
        unsafe { unsafe_cephes_single::igamif(a, self) }
    }

    fn digamma(self) -> f32 {
        unsafe { unsafe_cephes_single::psif(self) }
    }

    fn erf(self) -> f32 {
        unsafe { unsafe_cephes_single::erff(self) }
    }
    fn erfc(self) -> f32 {
        unsafe { unsafe_cephes_single::erfcf(self) }
    }

    fn hyp1f1(self, a: f32, b: f32) -> f32 {
        unsafe { unsafe_cephes_single::hypergf(a, b, self) }
    }
    fn hyp1f2(self, a: f32, b: f32, c: f32) -> f32 {
        let mut err = 0.0;
        unsafe { unsafe_cephes_single::onef2f(a, b, c, self, &mut err) }
    }
    fn hyp2f1(self, a: f32, b: f32, c: f32) -> f32 {
        unsafe { unsafe_cephes_single::hyp2f1f(a, b, c, self) }
    }
    fn hyp3f0(self, a: f32, b: f32, c: f32) -> f32 {
        let mut err = 0.0;
        unsafe { unsafe_cephes_single::threef0f(a, b, c, self, &mut err) }
    }

    fn norm(self) -> f32 {
        unsafe { unsafe_cephes_single::ndtrf(self) }
    }
    fn norm_inv(self) -> f32 {
        unsafe { unsafe_cephes_single::ndtrif(self) }
    }

    fn besselj(self, v: f32) -> f32 {
        unsafe { unsafe_cephes_single::jvf(v, self) }
    }
    fn bessely(self, v: f32) -> f32 {
        unsafe { unsafe_cephes_single::yvf(v, self) }
    }
    fn besseli(self, v: f32) -> f32 {
        unsafe { unsafe_cephes_single::ivf(v, self) }
    }
    fn besselk(self, n: i32) -> f32 {
        unsafe { unsafe_cephes_single::knf(n, self) }
    }

    fn riemann_zeta(self) -> f32 {
        unsafe { 1.0 + unsafe_cephes_single::zetacf(self) }
    }
    fn hurwitz_zeta(self, q: f32) -> f32 {
        unsafe { unsafe_cephes_single::zetaf(self, q) }
    }
}