1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// Copyright 2016 spatial-rs Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use num::{Zero, One, Signed, Float, Bounded, ToPrimitive, FromPrimitive, pow};
use std::ops::{MulAssign, AddAssign};
use geometry::{Shapes, Point, LineSegment, Rect};
use std::fmt::Debug;
use std::ops::{Deref, DerefMut};
use generic_array::ArrayLength;

/// The minimum functionality required to insert leaf geometry into `MbrMap`
/// Until the rust compiler allows compile-time generic integers, we'll be using generic_array's `ArrayLength` to specify
/// geometry dimensions at compile time.
///
/// The parameter `mbr` represents a minimum bounding rectangle.
/// An mbr whose corners are at (x1, y1), (x2, y2) will have the corresponding edges: (x1, x2), (y1, y2)
pub trait MbrLeafGeometry<P, DIM: ArrayLength<P> + ArrayLength<(P, P)>> {
    /// The geometry's dimension count
    fn dim(&self) -> usize;

    /// Determine the area of the geometry
    fn area(&self) -> P;

    /// the minimum extent for a given axis
    fn min_for_axis(&self, dim: usize) -> P;

    /// the maximum extent for a given axis
    fn max_for_axis(&self, dim: usize) -> P;

    /// Expand the mbr to minimally fit the leaf
    fn expand_mbr_to_fit(&self, mbr: &mut Rect<P, DIM>);

    /// Determine the distance from the mbr's center
    fn distance_from_mbr_center(&self, mbr: &Rect<P, DIM>) -> P;

    /// Determine if the leaf is completely contained in the mbr
    fn contained_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool;

    /// Determine if the leaf overlaps the mbr
    fn overlapped_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool;

    /// Determines the leaf area shared with the rectangle.
    /// In cases where the leaf and mbr overlap, but the leaf has no area (point or a line, for example), return 0
    fn area_overlapped_with_mbr(&self, mbr: &Rect<P, DIM>) -> P;
}

impl<P, DIM> MbrLeafGeometry<P, DIM> for Point<P, DIM>
    where P: Float + Signed + Bounded + MulAssign + AddAssign + ToPrimitive + FromPrimitive + Copy + Debug,
    DIM: ArrayLength<P> + ArrayLength<(P,P)>
{
    fn dim(&self) -> usize {
        self.coords.len()
    }

    fn area(&self) -> P {
        Zero::zero()
    }

    fn min_for_axis(&self, dim: usize) -> P {
        *self.coords.get(dim).unwrap()
    }

    fn max_for_axis(&self, dim: usize) -> P {
        *self.coords.get(dim).unwrap()
    }

    fn expand_mbr_to_fit(&self, mbr: &mut Rect<P, DIM>) {
        for (&mut(ref mut x, ref mut y), &z) in izip!(mbr.deref_mut(), self.deref()){
            *x = x.min(z);
            *y = y.max(z);
        }
    }

    fn distance_from_mbr_center(&self, mbr: &Rect<P, DIM>) -> P {
        let two = FromPrimitive::from_usize(2).unwrap();
        let dist: P = izip!(mbr.deref(), self.deref())
            .fold(Zero::zero(),
                |distance, (&(x, y), &z)| distance + pow((((x + y)/two) - z), 2));
        dist.sqrt()
    }

    fn contained_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool {
        self.overlapped_by_mbr(mbr)
    }

    fn overlapped_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool {
        for (&(x, y), &z) in izip!(mbr.deref(), self.deref()){
            if z < x ||  y < z {
                return false;
            }
        }
        true
    }

    #[allow(unused_variables)]
    fn area_overlapped_with_mbr(&self, mbr: &Rect<P, DIM>) -> P {
        Zero::zero()
    }
}

impl<P, DIM> MbrLeafGeometry<P, DIM> for LineSegment<P, DIM>
    where P: Float + Signed + Bounded + MulAssign + AddAssign + ToPrimitive + FromPrimitive + Copy + Debug,
    DIM: ArrayLength<P> + ArrayLength<(P,P)>
{

    fn dim(&self) -> usize {
        self.x.dim()
    }
    fn area(&self) -> P {
        Zero::zero()
    }

    fn min_for_axis(&self, dim: usize) -> P {
        self.x.coords.get(dim).unwrap().min(*self.y.coords.get(dim).unwrap())
    }

    fn max_for_axis(&self, dim: usize) -> P {
        self.x.coords.get(dim).unwrap().max(*self.y.coords.get(dim).unwrap())
    }

    fn expand_mbr_to_fit(&self, mbr: &mut Rect<P, DIM>) {
        self.x.expand_mbr_to_fit(mbr);
        self.y.expand_mbr_to_fit(mbr);
    }

    fn distance_from_mbr_center(&self, mbr: &Rect<P, DIM>) -> P {
        let two = FromPrimitive::from_usize(2).unwrap();
        let dist: P = izip!(mbr.deref(), self.x.deref(), self.y.deref())
            .fold(Zero::zero(),
                |distance, (&(x1, y1), &x2, &y2)| distance + pow(((x1 + y1)/two - (x2 + y2)/two), 2));
        dist.sqrt()
    }

    fn contained_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool {
        self.x.contained_by_mbr(mbr) && self.y.contained_by_mbr(mbr)
    }

    fn overlapped_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool {
        self.x.overlapped_by_mbr(mbr) || self.y.overlapped_by_mbr(mbr)
    }

    #[allow(unused_variables)]
    fn area_overlapped_with_mbr(&self, mbr: &Rect<P, DIM>) -> P {
        Zero::zero()
    }
}

impl<P, DIM> MbrLeafGeometry<P, DIM> for Rect<P, DIM>
    where P: Float + Signed + Bounded + MulAssign + AddAssign + ToPrimitive + FromPrimitive + Copy + Debug,
          DIM: ArrayLength<P> + ArrayLength<(P,P)>
{

    fn dim(&self) -> usize {
        self.edges.len()
    }

    fn area(&self) -> P {
        self.deref()
            .iter()
            .fold(One::one(), |area, &(x, y)| area * (y - x))
    }

    fn min_for_axis(&self, dim: usize) -> P {
        self.edges.get(dim).unwrap().0
    }

    fn max_for_axis(&self, dim: usize) -> P {
        self.edges.get(dim).unwrap().1
    }

    fn expand_mbr_to_fit(&self, mbr: &mut Rect<P, DIM>) {
        for (&mut (ref mut x1, ref mut y1), &(x2, y2)) in izip!(mbr.deref_mut(), self.deref()) {
            *x1 = x1.min(x2);
            *y1 = y1.max(y2);
        }
    }

    fn distance_from_mbr_center(&self, mbr: &Rect<P, DIM>) -> P {
        let two = FromPrimitive::from_usize(2).unwrap();
        let dist: P = izip!(mbr.deref(), self.deref())
            .fold(Zero::zero(), |distance, (&(x1, y1), &(x2, y2))| {
                distance + pow(((x1 + y1) / two - (x2 + y2) / two), 2)
            });
        dist.sqrt()
    }

    fn contained_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool {
        for (&(x1, y1), &(x2, y2)) in izip!(mbr.deref(), self.deref()) {
            if x2 < x1 || y1 < y2 {
                return false;
            }
        }
        true
    }

    fn overlapped_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool {
        for (&(x1, y1), &(x2, y2)) in izip!(mbr.deref(), self.deref()) {
            if !(x1 < y2) || !(x2 < y1) {
                return false;
            }
        }
        true
    }

    fn area_overlapped_with_mbr(&self, mbr: &Rect<P, DIM>) -> P {
        izip!(mbr.deref(), self.deref()).fold(One::one(), |area, (&(x1, y1), &(x2, y2))| {
            area * (y1.min(y2) - x1.max(x2)).max(Zero::zero())
        })
    }

}

impl<P, DIM> MbrLeafGeometry<P, DIM> for Shapes<P, DIM>
where P: Float + Signed + Bounded + MulAssign + AddAssign + ToPrimitive + FromPrimitive + Copy + Debug + Default,
    DIM: ArrayLength<P> + ArrayLength<(P,P)>
{

    fn dim(&self) -> usize {
        match *self {
            Shapes::Point(ref point) => point.dim(),
            Shapes::LineSegment(ref linesegment) => linesegment.dim(),
            Shapes::Rect(ref rect) => rect.dim()
        }
    }

    fn area(&self) -> P {
        match *self {
            Shapes::Point(ref point) => point.area(),
            Shapes::LineSegment(ref linesegment) => linesegment.area(),
            Shapes::Rect(ref rect) => rect.area()
        }
    }

    fn min_for_axis(&self, dim: usize) -> P {
        match *self {
            Shapes::Point(ref point) => point.min_for_axis(dim),
            Shapes::LineSegment(ref linesegment) => linesegment.min_for_axis(dim),
            Shapes::Rect(ref rect) => rect.min_for_axis(dim)
        }
    }

    fn max_for_axis(&self, dim: usize) -> P {
        match *self {
            Shapes::Point(ref point) => point.max_for_axis(dim),
            Shapes::LineSegment(ref linesegment) => linesegment.max_for_axis(dim),
            Shapes::Rect(ref rect) => rect.max_for_axis(dim)
        }
    }

    fn expand_mbr_to_fit(&self, mbr: &mut Rect<P, DIM>) {
        match *self {
            Shapes::Point(ref point) => point.expand_mbr_to_fit(mbr),
            Shapes::LineSegment(ref linesegment) => linesegment.expand_mbr_to_fit(mbr),
            Shapes::Rect(ref rect) => rect.expand_mbr_to_fit(mbr)
        }
    }

    fn distance_from_mbr_center(&self, mbr: &Rect<P, DIM>) -> P {
        match *self {
            Shapes::Point(ref point) => point.distance_from_mbr_center(mbr),
            Shapes::LineSegment(ref linesegment) => linesegment.distance_from_mbr_center(mbr),
            Shapes::Rect(ref rect) => rect.distance_from_mbr_center(mbr)
        }
    }

    fn contained_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool {
        match *self {
            Shapes::Point(ref point) => point.contained_by_mbr(mbr),
            Shapes::LineSegment(ref linesegment) => linesegment.contained_by_mbr(mbr),
            Shapes::Rect(ref rect) => rect.contained_by_mbr(mbr)
        }
    }

    fn overlapped_by_mbr(&self, mbr: &Rect<P, DIM>) -> bool {
        match *self {
            Shapes::Point(ref point) => point.overlapped_by_mbr(mbr),
            Shapes::LineSegment(ref linesegment) => linesegment.overlapped_by_mbr(mbr),
            Shapes::Rect(ref rect) => rect.overlapped_by_mbr(mbr)
        }
    }

    fn area_overlapped_with_mbr(&self, mbr: &Rect<P, DIM>) -> P {
        match *self {
            Shapes::Point(ref point) => point.area_overlapped_with_mbr(mbr),
            Shapes::LineSegment(ref linesegment) => linesegment.area_overlapped_with_mbr(mbr),
            Shapes::Rect(ref rect) => rect.area_overlapped_with_mbr(mbr)
        }
    }
}


#[cfg(test)]
mod tests {
    use std::ops::Deref;
    use typenum::consts::U3;
    use geometry::{Shapes, Point, LineSegment, Rect};
    use generic_array::GenericArray;
    use super::*;

    const ONE: [f64; 3] = [1.0f64, 1.0f64, 1.0f64];
    const ZERO: [f64; 3] = [0.0f64, 0.0f64, 0.0f64];
    const NEG_ONE: [f64; 3] = [-1.0f64, -1.0f64, -1.0f64];
    const NEG_TWO: [f64; 3] = [-2.0f64, -2.0f64, -2.0f64];

    // distance of [0.5, 0.5, 0.5]
    const EXPECTED_DISTANCE: f64 = 0.86602540378f64;

    #[test]
    fn point() {
        let point: Point<f64, U3> = Point::new(GenericArray::new());
        for i in point.deref() {
            assert_relative_eq!(0.0f64, i);
        }

        let zero: Shapes<f64, U3> = Shapes::Point(Point::from_slice(&ZERO));
        let one: Shapes<f64, U3> = Shapes::Point(Point::from_slice(&ONE));
        let neg_one: Shapes<f64, U3> = Shapes::Point(Point::from_slice(&NEG_ONE));

        // Shape tests
        // dim
        assert_eq!(ZERO.len(), zero.dim());
        // area
        assert_relative_eq!(0.0f64, zero.area());
        // min/max for axis
        for (i, item) in ZERO.iter().enumerate() {
            assert_relative_eq!(*item, zero.min_for_axis(i));
            assert_relative_eq!(*item, zero.max_for_axis(i));
        }
        let mut bounding_mbr = Rect::max_inverted();
        // expand_mbr_to_fit
        zero.expand_mbr_to_fit(&mut bounding_mbr);
        one.expand_mbr_to_fit(&mut bounding_mbr);
        for (i, (x, y)) in izip!(&ZERO, &ONE).enumerate() {
            assert_relative_eq!(*x, bounding_mbr.min_for_axis(i));
            assert_relative_eq!(*y, bounding_mbr.max_for_axis(i));
        }

        // distance_from_mbr_center
        assert_relative_eq!(EXPECTED_DISTANCE,
                            zero.distance_from_mbr_center(&bounding_mbr),
                            max_relative = 0.00000001);

        // contained_by_mbr
        assert!(zero.contained_by_mbr(&bounding_mbr));
        assert!(one.contained_by_mbr(&bounding_mbr));
        assert!(!neg_one.contained_by_mbr(&bounding_mbr));

        // overlapped_by_mbr
        assert!(zero.overlapped_by_mbr(&bounding_mbr));
        assert!(one.overlapped_by_mbr(&bounding_mbr));
        assert!(!neg_one.overlapped_by_mbr(&bounding_mbr));

        // area_overlapped_with_mbr
        assert_relative_eq!(0.0f64, zero.area_overlapped_with_mbr(&bounding_mbr));
    }

    #[test]
    fn line_segment() {
        // contained
        let zero_one: Shapes<f64, U3> = Shapes::LineSegment(LineSegment::from_slices(&ZERO, &ONE));
        // overlap
        let neg_one_one: Shapes<f64, U3> = Shapes::LineSegment(LineSegment::from_slices(&NEG_ONE,
                                                                                        &ONE));
        // outside
        let neg_two_neg_one: Shapes<f64, U3> =
            Shapes::LineSegment(LineSegment::from_slices(&NEG_TWO, &NEG_ONE));

        // Shape tests
        // dim
        assert_eq!(ZERO.len(), zero_one.dim());

        // area
        assert_relative_eq!(0.0f64, zero_one.area());

        // min/max for axis
        for (i, (x, y)) in izip!(&ZERO, &ONE).enumerate() {
            assert_relative_eq!(*x, zero_one.min_for_axis(i));
            assert_relative_eq!(*y, zero_one.max_for_axis(i));
        }

        let mut bounding_mbr = Rect::max_inverted();

        // expand_mbr_to_fit
        zero_one.expand_mbr_to_fit(&mut bounding_mbr);
        for (i, (x, y)) in izip!(&ZERO, &ONE).enumerate() {
            assert_relative_eq!(*x, bounding_mbr.min_for_axis(i));
            assert_relative_eq!(*y, bounding_mbr.max_for_axis(i));
        }

        // distance_from_mbr_center
        assert_relative_eq!(EXPECTED_DISTANCE,
                            neg_one_one.distance_from_mbr_center(&bounding_mbr),
                            max_relative = 0.00000001);

        // contained_by_mbr
        assert!(zero_one.contained_by_mbr(&bounding_mbr));
        assert!(!neg_one_one.contained_by_mbr(&bounding_mbr));
        assert!(!neg_two_neg_one.contained_by_mbr(&bounding_mbr));

        // overlapped_by_mbr
        assert!(zero_one.overlapped_by_mbr(&bounding_mbr));
        assert!(neg_one_one.overlapped_by_mbr(&bounding_mbr));
        assert!(!neg_two_neg_one.overlapped_by_mbr(&bounding_mbr));

        // area_overlapped_with_mbr
        assert_relative_eq!(0.0f64, zero_one.area_overlapped_with_mbr(&bounding_mbr));
    }

    #[test]
    fn rect() {

        let g_one: GenericArray<f64, U3> = arr![f64; 1.0f64, 1.0f64, 1.0f64];
        let g_zero: GenericArray<f64, U3> = arr![f64; 0.0f64, 0.0f64, 0.0f64];
        let g_neg_one: GenericArray<f64, U3> = arr![f64; -1.0f64, -1.0f64, -1.0f64];
        let g_neg_two: GenericArray<f64, U3> = arr![f64; -2.0f64, -2.0f64, -2.0f64];

        // contained
        let zero_one = Rect::from_corners(g_zero.clone(), g_one.clone());
        // overlapped
        let neg_one_one = Rect::from_corners(g_neg_one.clone(), g_one.clone());
        // outside
        let neg_two_neg_one = Rect::from_corners(g_neg_two.clone(), g_neg_one.clone());

        // Shape tests
        // dim
        assert_eq!(zero_one.len(), zero_one.dim());

        // area
        assert_relative_eq!(1.0f64, zero_one.area());

        // min/max for axis
        for (i, (x, y)) in izip!(&ZERO, &ONE).enumerate() {
            assert_relative_eq!(*x, zero_one.min_for_axis(i));
            assert_relative_eq!(*y, zero_one.max_for_axis(i));
        }

        let mut bounding_mbr = Rect::max_inverted();
        // expand_mbr_to_fit
        zero_one.expand_mbr_to_fit(&mut bounding_mbr);
        for (i, (x, y)) in izip!(&ZERO, &ONE).enumerate() {
            assert_relative_eq!(*x, bounding_mbr.min_for_axis(i));
            assert_relative_eq!(*y, bounding_mbr.max_for_axis(i));
        }

        // distance_from_mbr_center
        assert_relative_eq!(EXPECTED_DISTANCE,
                            neg_one_one.distance_from_mbr_center(&bounding_mbr),
                            max_relative = 0.00000001);

        // contained_by_mbr
        assert!(zero_one.contained_by_mbr(&bounding_mbr));
        assert!(!neg_one_one.contained_by_mbr(&bounding_mbr));
        assert!(!neg_two_neg_one.contained_by_mbr(&bounding_mbr));

        // overlapped_by_mbr
        assert!(zero_one.overlapped_by_mbr(&bounding_mbr));
        assert!(neg_one_one.overlapped_by_mbr(&bounding_mbr));
        assert!(!neg_two_neg_one.overlapped_by_mbr(&bounding_mbr));

        // area_overlapped_with_mbr
        assert_relative_eq!(1.0f64, zero_one.area_overlapped_with_mbr(&bounding_mbr));
        assert_relative_eq!(1.0f64,
                            neg_one_one.area_overlapped_with_mbr(&bounding_mbr));
    }
}