1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
use std::any::TypeId;
use std::ops::{Index, IndexMut};
use crate::algebraic_type::AlgebraicType;
use crate::algebraic_type_ref::AlgebraicTypeRef;
use crate::WithTypespace;
use crate::{de::Deserialize, ser::Serialize};
/// A `Typespace` represents the typing context in SATS.
///
/// That is, this is the `Δ` or `Γ` you'll see in type theory litterature.
///
/// We use (sort of) [deBrujin indices](https://en.wikipedia.org/wiki/De_Bruijn_index)
/// to represent our type variables.
/// Notably however, these are given for the entire module
/// and there are no universal quantifiers (i.e., `Δ, α ⊢ τ | Δ ⊢ ∀ α. τ`)
/// nor are there type lambdas (i.e., `Λτ. v`).
/// See [System F], the second-order lambda calculus, for more on `∀` and `Λ`.
///
/// There are however recursive types in SATs,
/// e.g., `&0 = { Cons({ v: U8, t: &0 }), Nil }` represents a basic cons list
/// where `&0` is the type reference at index `0`.
///
/// [System F]: https://en.wikipedia.org/wiki/System_F
#[derive(Debug, Clone, Deserialize, Serialize)]
#[sats(crate = crate)]
pub struct Typespace {
/// The types in our typing context that can be referred to with [`AlgebraicTypeRef`]s.
pub types: Vec<AlgebraicType>,
}
impl Default for Typespace {
fn default() -> Self {
Self::new(Vec::new())
}
}
impl Index<AlgebraicTypeRef> for Typespace {
type Output = AlgebraicType;
fn index(&self, index: AlgebraicTypeRef) -> &Self::Output {
&self.types[index.0 as usize]
}
}
impl IndexMut<AlgebraicTypeRef> for Typespace {
fn index_mut(&mut self, index: AlgebraicTypeRef) -> &mut Self::Output {
&mut self.types[index.0 as usize]
}
}
impl Typespace {
pub const EMPTY: &Typespace = &Self::new(Vec::new());
/// Returns a context ([`Typespace`]) with the given `types`.
pub const fn new(types: Vec<AlgebraicType>) -> Self {
Self { types }
}
/// Returns the [`AlgebraicType`] referred to by `r` within this context.
pub fn get(&self, r: AlgebraicTypeRef) -> Option<&AlgebraicType> {
self.types.get(r.idx())
}
/// Inserts an `AlgebraicType` into the typespace
/// and returns an `AlgebraicTypeRef` that refers to the inserted `AlgebraicType`.
///
/// This allows for self referential,
/// recursive or other complex types to be declared in the typespace.
///
/// You can also use this to later change the meaning of the returned `AlgebraicTypeRef`
/// when you cannot provide the full definition of the type yet.
///
/// Panics if the number of type references exceeds an `u32`.
pub fn add(&mut self, ty: AlgebraicType) -> AlgebraicTypeRef {
let index = self
.types
.len()
.try_into()
.expect("ran out of space for `AlgebraicTypeRef`s");
self.types.push(ty);
AlgebraicTypeRef(index)
}
/// Returns `ty` combined with the context `self`.
pub const fn with_type<'a, T: ?Sized>(&'a self, ty: &'a T) -> WithTypespace<'a, T> {
WithTypespace::new(self, ty)
}
}
/// A trait for types that can be represented as an `AlgebraicType`
/// provided a typing context `typespace`.
pub trait SpacetimeType {
/// Returns an `AlgebraicType` representing the type for `Self` in SATS
/// and in the typing context in `typespace`.
fn make_type<S: TypespaceBuilder>(typespace: &mut S) -> AlgebraicType;
}
pub use spacetimedb_bindings_macro::SpacetimeType;
/// A trait for types that can build a [`Typespace`].
pub trait TypespaceBuilder {
/// Returns and adds a representation of type `T: 'static` as an `AlgebraicType`
/// with an optional `name` to the typing context in `self`.
fn add(
&mut self,
typeid: TypeId,
name: Option<&'static str>,
make_ty: impl FnOnce(&mut Self) -> AlgebraicType,
) -> AlgebraicType;
}
/// Implements [`SpacetimeType`] for a type in a simplified manner.
///
/// An example:
/// ```ignore
/// struct Foo<'a, T>(&'a T, u8);
/// impl_st!(
/// // Type parameters Impl type
/// // v v
/// // -------------------- ----------
/// ['a, T: SpacetimeType] Foo<'a, T>,
/// // The `make_type` implementation where `ts: impl TypespaceBuilder`
/// // and the expression right of `=>` is an `AlgebraicType`.
/// ts => AlgebraicType::product([T::make_type(ts), AlgebraicType::U8])
/// );
/// ```
#[macro_export]
macro_rules! impl_st {
([ $($rgenerics:tt)* ] $rty:ty, $ts:ident => $stty:expr) => {
impl<$($rgenerics)*> $crate::SpacetimeType for $rty {
fn make_type<S: $crate::typespace::TypespaceBuilder>($ts: &mut S) -> $crate::AlgebraicType {
$stty
}
}
};
}
macro_rules! impl_primitives {
($($t:ty => $x:ident,)*) => {
$(impl_st!([] $t, _ts => AlgebraicType::$x);)*
};
}
impl_primitives! {
bool => Bool,
u8 => U8,
i8 => I8,
u16 => U16,
i16 => I16,
u32 => U32,
i32 => I32,
u64 => U64,
i64 => I64,
u128 => U128,
i128 => I128,
f32 => F32,
f64 => F64,
String => String,
}
impl_st!([] (), _ts => AlgebraicType::unit());
impl_st!([] &str, _ts => AlgebraicType::String);
impl_st!([T: SpacetimeType] Vec<T>, ts => AlgebraicType::array(T::make_type(ts)));
impl_st!([T: SpacetimeType] Option<T>, ts => AlgebraicType::option(T::make_type(ts)));