1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
pub mod branch;
pub mod ecall;
pub mod memory;
pub mod register;
use core::borrow::Borrow;
use p3_air::Air;
use p3_air::AirBuilder;
use p3_air::AirBuilderWithPublicValues;
use p3_air::BaseAir;
use p3_field::AbstractField;
use p3_matrix::Matrix;
use crate::air::BaseAirBuilder;
use crate::air::PublicValues;
use crate::air::SP1AirBuilder;
use crate::air::Word;
use crate::air::POSEIDON_NUM_WORDS;
use crate::air::PV_DIGEST_NUM_WORDS;
use crate::air::SP1_PROOF_NUM_PV_ELTS;
use crate::bytes::ByteOpcode;
use crate::cpu::columns::OpcodeSelectorCols;
use crate::cpu::columns::{CpuCols, NUM_CPU_COLS};
use crate::cpu::CpuChip;
use crate::operations::BabyBearWordRangeChecker;
use crate::runtime::Opcode;
use super::columns::eval_channel_selectors;
use super::columns::OPCODE_SELECTORS_COL_MAP;
impl<AB> Air<AB> for CpuChip
where
AB: SP1AirBuilder + AirBuilderWithPublicValues,
AB::Var: Sized,
{
#[inline(never)]
fn eval(&self, builder: &mut AB) {
let main = builder.main();
let (local, next) = (main.row_slice(0), main.row_slice(1));
let local: &CpuCols<AB::Var> = (*local).borrow();
let next: &CpuCols<AB::Var> = (*next).borrow();
let public_values_slice: [AB::Expr; SP1_PROOF_NUM_PV_ELTS] =
core::array::from_fn(|i| builder.public_values()[i].into());
let public_values: &PublicValues<Word<AB::Expr>, AB::Expr> =
public_values_slice.as_slice().borrow();
// Program constraints.
builder.send_program(
local.pc,
local.instruction,
local.selectors,
local.shard,
local.is_real,
);
// Compute some flags for which type of instruction we are dealing with.
let is_memory_instruction: AB::Expr = self.is_memory_instruction::<AB>(&local.selectors);
let is_branch_instruction: AB::Expr = self.is_branch_instruction::<AB>(&local.selectors);
let is_alu_instruction: AB::Expr = self.is_alu_instruction::<AB>(&local.selectors);
// Register constraints.
self.eval_registers::<AB>(builder, local, is_branch_instruction.clone());
// Memory instructions.
self.eval_memory_address_and_access::<AB>(builder, local, is_memory_instruction.clone());
self.eval_memory_load::<AB>(builder, local);
self.eval_memory_store::<AB>(builder, local);
// Channel constraints.
eval_channel_selectors(
builder,
&local.channel_selectors,
&next.channel_selectors,
local.channel,
local.is_real,
next.is_real,
);
// ALU instructions.
builder.send_alu(
local.instruction.opcode,
local.op_a_val(),
local.op_b_val(),
local.op_c_val(),
local.shard,
local.channel,
local.nonce,
is_alu_instruction,
);
// Branch instructions.
self.eval_branch_ops::<AB>(builder, is_branch_instruction.clone(), local, next);
// Jump instructions.
self.eval_jump_ops::<AB>(builder, local, next);
// AUIPC instruction.
self.eval_auipc(builder, local);
// ECALL instruction.
self.eval_ecall(builder, local);
// COMMIT/COMMIT_DEFERRED_PROOFS ecall instruction.
self.eval_commit(
builder,
local,
public_values.committed_value_digest.clone(),
public_values.deferred_proofs_digest.clone(),
);
// HALT ecall and UNIMPL instruction.
self.eval_halt_unimpl(builder, local, next, public_values);
// Check that the shard and clk is updated correctly.
self.eval_shard_clk(builder, local, next);
// Check that the pc is updated correctly.
self.eval_pc(builder, local, next, is_branch_instruction.clone());
// Check public values constraints.
self.eval_public_values(builder, local, next, public_values);
// Check that the is_real flag is correct.
self.eval_is_real(builder, local, next);
// Check that when `is_real=0` that all flags that send interactions are zero.
local
.selectors
.into_iter()
.enumerate()
.for_each(|(i, selector)| {
if i == OPCODE_SELECTORS_COL_MAP.imm_b {
builder
.when(AB::Expr::one() - local.is_real)
.assert_one(local.selectors.imm_b);
} else if i == OPCODE_SELECTORS_COL_MAP.imm_c {
builder
.when(AB::Expr::one() - local.is_real)
.assert_one(local.selectors.imm_c);
} else {
builder
.when(AB::Expr::one() - local.is_real)
.assert_zero(selector);
}
});
}
}
impl CpuChip {
/// Whether the instruction is an ALU instruction.
pub(crate) fn is_alu_instruction<AB: SP1AirBuilder>(
&self,
opcode_selectors: &OpcodeSelectorCols<AB::Var>,
) -> AB::Expr {
opcode_selectors.is_alu.into()
}
/// Constraints related to jump operations.
pub(crate) fn eval_jump_ops<AB: SP1AirBuilder>(
&self,
builder: &mut AB,
local: &CpuCols<AB::Var>,
next: &CpuCols<AB::Var>,
) {
// Get the jump specific columns
let jump_columns = local.opcode_specific_columns.jump();
let is_jump_instruction = local.selectors.is_jal + local.selectors.is_jalr;
// Verify that the local.pc + 4 is saved in op_a for both jump instructions.
// When op_a is set to register X0, the RISC-V spec states that the jump instruction will
// not have a return destination address (it is effectively a GOTO command). In this case,
// we shouldn't verify the return address.
builder
.when(is_jump_instruction.clone())
.when_not(local.instruction.op_a_0)
.assert_eq(
local.op_a_val().reduce::<AB>(),
local.pc + AB::F::from_canonical_u8(4),
);
// Verify that the word form of local.pc is correct for JAL instructions.
builder
.when(local.selectors.is_jal)
.assert_eq(jump_columns.pc.reduce::<AB>(), local.pc);
// Verify that the word form of next.pc is correct for both jump instructions.
builder
.when_transition()
.when(next.is_real)
.when(is_jump_instruction.clone())
.assert_eq(jump_columns.next_pc.reduce::<AB>(), next.pc);
// When the last row is real and it's a jump instruction, assert that local.next_pc <==> jump_column.next_pc
builder
.when(local.is_real)
.when(is_jump_instruction.clone())
.assert_eq(jump_columns.next_pc.reduce::<AB>(), local.next_pc);
// Range check op_a, pc, and next_pc.
BabyBearWordRangeChecker::<AB::F>::range_check(
builder,
local.op_a_val(),
jump_columns.op_a_range_checker,
is_jump_instruction.clone(),
);
BabyBearWordRangeChecker::<AB::F>::range_check(
builder,
jump_columns.pc,
jump_columns.pc_range_checker,
local.selectors.is_jal.into(),
);
BabyBearWordRangeChecker::<AB::F>::range_check(
builder,
jump_columns.next_pc,
jump_columns.next_pc_range_checker,
is_jump_instruction.clone(),
);
// Verify that the new pc is calculated correctly for JAL instructions.
builder.send_alu(
AB::Expr::from_canonical_u32(Opcode::ADD as u32),
jump_columns.next_pc,
jump_columns.pc,
local.op_b_val(),
local.shard,
local.channel,
jump_columns.jal_nonce,
local.selectors.is_jal,
);
// Verify that the new pc is calculated correctly for JALR instructions.
builder.send_alu(
AB::Expr::from_canonical_u32(Opcode::ADD as u32),
jump_columns.next_pc,
local.op_b_val(),
local.op_c_val(),
local.shard,
local.channel,
jump_columns.jalr_nonce,
local.selectors.is_jalr,
);
}
/// Constraints related to the AUIPC opcode.
pub(crate) fn eval_auipc<AB: SP1AirBuilder>(&self, builder: &mut AB, local: &CpuCols<AB::Var>) {
// Get the auipc specific columns.
let auipc_columns = local.opcode_specific_columns.auipc();
// Verify that the word form of local.pc is correct.
builder
.when(local.selectors.is_auipc)
.assert_eq(auipc_columns.pc.reduce::<AB>(), local.pc);
// Range check the pc.
BabyBearWordRangeChecker::<AB::F>::range_check(
builder,
auipc_columns.pc,
auipc_columns.pc_range_checker,
local.selectors.is_auipc.into(),
);
// Verify that op_a == pc + op_b.
builder.send_alu(
AB::Expr::from_canonical_u32(Opcode::ADD as u32),
local.op_a_val(),
auipc_columns.pc,
local.op_b_val(),
local.shard,
local.channel,
auipc_columns.auipc_nonce,
local.selectors.is_auipc,
);
}
/// Constraints related to the shard and clk.
///
/// This method ensures that all of the shard values are the same and that the clk starts at 0
/// and is transitioned apporpriately. It will also check that shard values are within 16 bits
/// and clk values are within 24 bits. Those range checks are needed for the memory access
/// timestamp check, which assumes those values are within 2^24. See [`MemoryAirBuilder::verify_mem_access_ts`].
pub(crate) fn eval_shard_clk<AB: SP1AirBuilder>(
&self,
builder: &mut AB,
local: &CpuCols<AB::Var>,
next: &CpuCols<AB::Var>,
) {
// Verify that all shard values are the same.
builder
.when_transition()
.when(next.is_real)
.assert_eq(local.shard, next.shard);
// Verify that the shard value is within 16 bits.
builder.send_byte(
AB::Expr::from_canonical_u8(ByteOpcode::U16Range as u8),
local.shard,
AB::Expr::zero(),
AB::Expr::zero(),
local.shard,
local.channel,
local.is_real,
);
// Verify that the first row has a clk value of 0.
builder.when_first_row().assert_zero(local.clk);
// Verify that the clk increments are correct. Most clk increment should be 4, but for some
// precompiles, there are additional cycles.
let num_extra_cycles = self.get_num_extra_ecall_cycles::<AB>(local);
// We already assert that `local.clk < 2^24`. `num_extra_cycles` is an entry of a word and
// therefore less than `2^8`, this means that the sum cannot overflow in a 31 bit field.
let expected_next_clk =
local.clk + AB::Expr::from_canonical_u32(4) + num_extra_cycles.clone();
builder
.when_transition()
.when(next.is_real)
.assert_eq(expected_next_clk.clone(), next.clk);
// Range check that the clk is within 24 bits using it's limb values.
builder.eval_range_check_24bits(
local.clk,
local.clk_16bit_limb,
local.clk_8bit_limb,
local.shard,
local.channel,
local.is_real,
);
}
/// Constraints related to the pc for non jump, branch, and halt instructions.
///
/// The function will verify that the pc increments by 4 for all instructions except branch, jump
/// and halt instructions. Also, it ensures that the pc is carried down to the last row for non-real rows.
pub(crate) fn eval_pc<AB: SP1AirBuilder>(
&self,
builder: &mut AB,
local: &CpuCols<AB::Var>,
next: &CpuCols<AB::Var>,
is_branch_instruction: AB::Expr,
) {
// When is_sequential_instr is true, assert that instruction is not branch, jump, or halt.
// Note that the condition `when(local_is_real)` is implied from the previous constraint.
let is_halt = self.get_is_halt_syscall::<AB>(builder, local);
builder.when(local.is_real).assert_eq(
local.is_sequential_instr,
AB::Expr::one()
- (is_branch_instruction
+ local.selectors.is_jal
+ local.selectors.is_jalr
+ is_halt),
);
// Verify that the pc increments by 4 for all instructions except branch, jump and halt instructions.
// The other case is handled by eval_jump, eval_branch and eval_ecall (for halt).
builder
.when_transition()
.when(next.is_real)
.when(local.is_sequential_instr)
.assert_eq(local.pc + AB::Expr::from_canonical_u8(4), next.pc);
// When the last row is real and it's a sequential instruction, assert that local.next_pc <==> local.pc + 4
builder
.when(local.is_real)
.when(local.is_sequential_instr)
.assert_eq(local.pc + AB::Expr::from_canonical_u8(4), local.next_pc);
}
/// Constraints related to the public values.
pub(crate) fn eval_public_values<AB: SP1AirBuilder>(
&self,
builder: &mut AB,
local: &CpuCols<AB::Var>,
next: &CpuCols<AB::Var>,
public_values: &PublicValues<Word<AB::Expr>, AB::Expr>,
) {
// Verify the public value's shard.
builder
.when(local.is_real)
.assert_eq(public_values.execution_shard.clone(), local.shard);
// Verify the public value's start pc.
builder
.when_first_row()
.assert_eq(public_values.start_pc.clone(), local.pc);
// Verify the public value's next pc. We need to handle two cases:
// 1. The last real row is a transition row.
// 2. The last real row is the last row.
// If the last real row is a transition row, verify the public value's next pc.
builder
.when_transition()
.when(local.is_real - next.is_real)
.assert_eq(public_values.next_pc.clone(), local.next_pc);
// If the last real row is the last row, verify the public value's next pc.
builder
.when_last_row()
.when(local.is_real)
.assert_eq(public_values.next_pc.clone(), local.next_pc);
}
/// Constraints related to the is_real column.
///
/// This method checks that the is_real column is a boolean. It also checks that the first row
/// is 1 and once its 0, it never changes value.
pub(crate) fn eval_is_real<AB: SP1AirBuilder>(
&self,
builder: &mut AB,
local: &CpuCols<AB::Var>,
next: &CpuCols<AB::Var>,
) {
// Check the is_real flag. It should be 1 for the first row. Once its 0, it should never
// change value.
builder.assert_bool(local.is_real);
builder.when_first_row().assert_one(local.is_real);
builder
.when_transition()
.when_not(local.is_real)
.assert_zero(next.is_real);
}
}
impl<F> BaseAir<F> for CpuChip {
fn width(&self) -> usize {
NUM_CPU_COLS
}
}