1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
// This file is part of Substrate.

// Copyright (C) 2019-2020 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A set of election algorithms to be used with a substrate runtime, typically within the staking
//! sub-system. Notable implementation include
//!
//! - [`seq_phragmen`]: Implements the Phragmén Sequential Method. An un-ranked, relatively fast
//!   election method that ensures PJR, but does not provide a constant factor approximation of the
//!   maximin problem.
//! - [`balance_solution`]: Implements the star balancing algorithm. This iterative process can
//!   increase a solutions score, as described in [`evaluate_support`].
//!
//! More information can be found at: https://arxiv.org/abs/2004.12990

#![cfg_attr(not(feature = "std"), no_std)]

use sp_std::{prelude::*, collections::btree_map::BTreeMap, fmt::Debug, cmp::Ordering, convert::TryFrom};
use sp_arithmetic::{
	PerThing, Rational128, ThresholdOrd, InnerOf, Normalizable,
	helpers_128bit::multiply_by_rational,
	traits::{Zero, Saturating, Bounded, SaturatedConversion},
};

#[cfg(test)]
mod mock;
#[cfg(test)]
mod tests;
#[cfg(feature = "std")]
use serde::{Serialize, Deserialize};
#[cfg(feature = "std")]
use codec::{Encode, Decode};

mod node;
mod reduce;
mod helpers;

// re-export reduce stuff.
pub use reduce::reduce;

// re-export the helpers.
pub use helpers::*;

// re-export the compact macro, with the dependencies of the macro.
#[doc(hidden)]
pub use codec;
#[doc(hidden)]
pub use sp_arithmetic;

/// Simple Extension trait to easily convert `None` from index closures to `Err`.
///
/// This is only generated and re-exported for the compact solution code to use.
#[doc(hidden)]
pub trait __OrInvalidIndex<T> {
	fn or_invalid_index(self) -> Result<T, Error>;
}

impl<T> __OrInvalidIndex<T> for Option<T> {
	fn or_invalid_index(self) -> Result<T, Error> {
		self.ok_or(Error::CompactInvalidIndex)
	}
}

// re-export the compact solution type.
pub use sp_npos_elections_compact::generate_solution_type;

/// A trait to limit the number of votes per voter. The generated compact type will implement this.
pub trait VotingLimit {
	const LIMIT: usize;
}

/// an aggregator trait for a generic type of a voter/target identifier. This usually maps to
/// substrate's account id.
pub trait IdentifierT: Clone + Eq + Default + Ord + Debug + codec::Codec {}

impl<T: Clone + Eq + Default + Ord + Debug + codec::Codec> IdentifierT for T {}

/// The errors that might occur in the this crate and compact.
#[derive(Debug, Eq, PartialEq)]
pub enum Error {
	/// While going from compact to staked, the stake of all the edges has gone above the
	/// total and the last stake cannot be assigned.
	CompactStakeOverflow,
	/// The compact type has a voter who's number of targets is out of bound.
	CompactTargetOverflow,
	/// One of the index functions returned none.
	CompactInvalidIndex,
	/// An error occurred in some arithmetic operation.
	ArithmeticError(&'static str),
}

/// A type which is used in the API of this crate as a numeric weight of a vote, most often the
/// stake of the voter. It is always converted to [`ExtendedBalance`] for computation.
pub type VoteWeight = u64;

/// A type in which performing operations on vote weights are safe.
pub type ExtendedBalance = u128;

/// The score of an assignment. This can be computed from the support map via [`evaluate_support`].
pub type ElectionScore = [ExtendedBalance; 3];

/// A winner, with their respective approval stake.
pub type WithApprovalOf<A> = (A, ExtendedBalance);

/// The denominator used for loads. Since votes are collected as u64, the smallest ratio that we
/// might collect is `1/approval_stake` where approval stake is the sum of votes. Hence, some number
/// bigger than u64::max_value() is needed. For maximum accuracy we simply use u128;
const DEN: u128 = u128::max_value();

/// A candidate entity for the election.
#[derive(Clone, Default, Debug)]
struct Candidate<AccountId> {
	/// Identifier.
	who: AccountId,
	/// Intermediary value used to sort candidates.
	score: Rational128,
	/// Sum of the stake of this candidate based on received votes.
	approval_stake: ExtendedBalance,
	/// Flag for being elected.
	elected: bool,
}

/// A voter entity.
#[derive(Clone, Default, Debug)]
struct Voter<AccountId> {
	/// Identifier.
	who: AccountId,
	/// List of candidates proposed by this voter.
	edges: Vec<Edge<AccountId>>,
	/// The stake of this voter.
	budget: ExtendedBalance,
	/// Incremented each time a candidate that this voter voted for has been elected.
	load: Rational128,
}

/// A candidate being backed by a voter.
#[derive(Clone, Default, Debug)]
struct Edge<AccountId> {
	/// Identifier.
	who: AccountId,
	/// Load of this vote.
	load: Rational128,
	/// Index of the candidate stored in the 'candidates' vector.
	candidate_index: usize,
}

/// Final result of the election.
#[derive(Debug)]
pub struct ElectionResult<AccountId, T: PerThing> {
	/// Just winners zipped with their approval stake. Note that the approval stake is merely the
	/// sub of their received stake and could be used for very basic sorting and approval voting.
	pub winners: Vec<WithApprovalOf<AccountId>>,
	/// Individual assignments. for each tuple, the first elements is a voter and the second
	/// is the list of candidates that it supports.
	pub assignments: Vec<Assignment<AccountId, T>>,
}

/// A voter's stake assignment among a set of targets, represented as ratios.
#[derive(Debug, Clone, Default)]
#[cfg_attr(feature = "std", derive(PartialEq, Eq, Encode, Decode))]
pub struct Assignment<AccountId, P: PerThing> {
	/// Voter's identifier.
	pub who: AccountId,
	/// The distribution of the voter's stake.
	pub distribution: Vec<(AccountId, P)>,
}

impl<AccountId: IdentifierT, P: PerThing> Assignment<AccountId, P>
where
	ExtendedBalance: From<InnerOf<P>>,
{
	/// Convert from a ratio assignment into one with absolute values aka. [`StakedAssignment`].
	///
	/// It needs `stake` which is the total budget of the voter. If `fill` is set to true,
	/// it _tries_ to ensure that all the potential rounding errors are compensated and the
	/// distribution's sum is exactly equal to the total budget, by adding or subtracting the
	/// remainder from the last distribution.
	///
	/// If an edge ratio is [`Bounded::min_value()`], it is dropped. This edge can never mean
	/// anything useful.
	pub fn into_staked(self, stake: ExtendedBalance) -> StakedAssignment<AccountId>
	where
		P: sp_std::ops::Mul<ExtendedBalance, Output = ExtendedBalance>,
	{
		let distribution = self.distribution
			.into_iter()
			.filter_map(|(target, p)| {
				// if this ratio is zero, then skip it.
				if p.is_zero() {
					None
				} else {
					// NOTE: this mul impl will always round to the nearest number, so we might both
					// overflow and underflow.
					let distribution_stake = p * stake;
					Some((target, distribution_stake))
				}
			})
			.collect::<Vec<(AccountId, ExtendedBalance)>>();

		StakedAssignment {
			who: self.who,
			distribution,
		}
	}

	/// Try and normalize this assignment.
	///
	/// If `Ok(())` is returned, then the assignment MUST have been successfully normalized to 100%.
	pub fn try_normalize(&mut self) -> Result<(), &'static str> {
		self.distribution
			.iter()
			.map(|(_, p)| *p)
			.collect::<Vec<_>>()
			.normalize(P::one())
			.map(|normalized_ratios|
				self.distribution
					.iter_mut()
					.zip(normalized_ratios)
					.for_each(|((_, old), corrected)| { *old = corrected; })
			)
	}
}

/// A voter's stake assignment among a set of targets, represented as absolute values in the scale
/// of [`ExtendedBalance`].
#[derive(Debug, Clone, Default)]
#[cfg_attr(feature = "std", derive(PartialEq, Eq, Encode, Decode))]
pub struct StakedAssignment<AccountId> {
	/// Voter's identifier
	pub who: AccountId,
	/// The distribution of the voter's stake.
	pub distribution: Vec<(AccountId, ExtendedBalance)>,
}

impl<AccountId> StakedAssignment<AccountId> {
	/// Converts self into the normal [`Assignment`] type.
	///
	/// If `fill` is set to true, it _tries_ to ensure that all the potential rounding errors are
	/// compensated and the distribution's sum is exactly equal to 100%, by adding or subtracting
	/// the remainder from the last distribution.
	///
	/// NOTE: it is quite critical that this attempt always works. The data type returned here will
	/// potentially get used to create a compact type; a compact type requires sum of ratios to be
	/// less than 100% upon un-compacting.
	///
	/// If an edge stake is so small that it cannot be represented in `T`, it is ignored. This edge
	/// can never be re-created and does not mean anything useful anymore.
	pub fn into_assignment<P: PerThing>(self) -> Assignment<AccountId, P>
	where
		ExtendedBalance: From<InnerOf<P>>,
		AccountId: IdentifierT,
	{
		let stake = self.total();
		let distribution = self.distribution
			.into_iter()
			.filter_map(|(target, w)| {
				let per_thing = P::from_rational_approximation(w, stake);
				if per_thing == Bounded::min_value() {
					None
				} else {
					Some((target, per_thing))
				}
			})
			.collect::<Vec<(AccountId, P)>>();

		Assignment {
			who: self.who,
			distribution,
		}
	}

	/// Try and normalize this assignment.
	///
	/// If `Ok(())` is returned, then the assignment MUST have been successfully normalized to
	/// `stake`.
	///
	/// NOTE: current implementation of `.normalize` is almost safe to `expect()` upon. The only
	/// error case is when the input cannot fit in `T`, or the sum of input cannot fit in `T`.
	/// Sadly, both of these are dependent upon the implementation of `VoteLimit`, i.e. the limit
	/// of edges per voter which is enforced from upstream. Hence, at this crate, we prefer
	/// returning a result and a use the name prefix `try_`.
	pub fn try_normalize(&mut self, stake: ExtendedBalance) -> Result<(), &'static str> {
		self.distribution
			.iter()
			.map(|(_, ref weight)| *weight)
			.collect::<Vec<_>>()
			.normalize(stake)
			.map(|normalized_weights|
				self.distribution
					.iter_mut()
					.zip(normalized_weights.into_iter())
					.for_each(|((_, weight), corrected)| { *weight = corrected; })
			)
	}

	/// Get the total stake of this assignment (aka voter budget).
	pub fn total(&self) -> ExtendedBalance {
		self.distribution.iter().fold(Zero::zero(), |a, b| a.saturating_add(b.1))
	}
}

/// A structure to demonstrate the election result from the perspective of the candidate, i.e. how
/// much support each candidate is receiving.
///
/// This complements the [`ElectionResult`] and is needed to run the balancing post-processing.
///
/// This, at the current version, resembles the `Exposure` defined in the Staking pallet, yet
/// they do not necessarily have to be the same.
#[derive(Default, Debug)]
#[cfg_attr(feature = "std", derive(Serialize, Deserialize, Eq, PartialEq))]
pub struct Support<AccountId> {
	/// Total support.
	pub total: ExtendedBalance,
	/// Support from voters.
	pub voters: Vec<(AccountId, ExtendedBalance)>,
}

/// A linkage from a candidate and its [`Support`].
pub type SupportMap<A> = BTreeMap<A, Support<A>>;

/// Perform election based on Phragmén algorithm.
///
/// Returns an `Option` the set of winners and their detailed support ratio from each voter if
/// enough candidates are provided. Returns `None` otherwise.
///
/// * `candidate_count`: number of candidates to elect.
/// * `minimum_candidate_count`: minimum number of candidates to elect. If less candidates exist,
///   `None` is returned.
/// * `initial_candidates`: candidates list to be elected from.
/// * `initial_voters`: voters list.
///
/// This function does not strip out candidates who do not have any backing stake. It is the
/// responsibility of the caller to make sure only those candidates who have a sensible economic
/// value are passed in. From the perspective of this function, a candidate can easily be among the
/// winner with no backing stake.
pub fn seq_phragmen<AccountId, R>(
	candidate_count: usize,
	minimum_candidate_count: usize,
	initial_candidates: Vec<AccountId>,
	initial_voters: Vec<(AccountId, VoteWeight, Vec<AccountId>)>,
) -> Option<ElectionResult<AccountId, R>> where
	AccountId: Default + Ord + Clone,
	R: PerThing,
{
	// return structures
	let mut elected_candidates: Vec<(AccountId, ExtendedBalance)>;
	let mut assigned: Vec<Assignment<AccountId, R>>;

	// used to cache and access candidates index.
	let mut c_idx_cache = BTreeMap::<AccountId, usize>::new();

	// voters list.
	let num_voters = initial_candidates.len() + initial_voters.len();
	let mut voters: Vec<Voter<AccountId>> = Vec::with_capacity(num_voters);

	// Iterate once to create a cache of candidates indexes. This could be optimized by being
	// provided by the call site.
	let mut candidates = initial_candidates
		.into_iter()
		.enumerate()
		.map(|(idx, who)| {
			c_idx_cache.insert(who.clone(), idx);
			Candidate { who, ..Default::default() }
		})
		.collect::<Vec<Candidate<AccountId>>>();

	// early return if we don't have enough candidates
	if candidates.len() < minimum_candidate_count { return None; }

	// collect voters. use `c_idx_cache` for fast access and aggregate `approval_stake` of
	// candidates.
	voters.extend(initial_voters.into_iter().map(|(who, voter_stake, votes)| {
		let mut edges: Vec<Edge<AccountId>> = Vec::with_capacity(votes.len());
		for v in votes {
			if edges.iter().any(|e| e.who == v) {
				// duplicate edge.
				continue;
			}
			if let Some(idx) = c_idx_cache.get(&v) {
				// This candidate is valid + already cached.
				candidates[*idx].approval_stake = candidates[*idx].approval_stake
					.saturating_add(voter_stake.into());
				edges.push(Edge { who: v.clone(), candidate_index: *idx, ..Default::default() });
			} // else {} would be wrong votes. We don't really care about it.
		}
		Voter {
			who,
			edges: edges,
			budget: voter_stake.into(),
			load: Rational128::zero(),
		}
	}));


	// we have already checked that we have more candidates than minimum_candidate_count.
	let to_elect = candidate_count.min(candidates.len());
	elected_candidates = Vec::with_capacity(candidate_count);
	assigned = Vec::with_capacity(candidate_count);

	// main election loop
	for _round in 0..to_elect {
		// loop 1: initialize score
		for c in &mut candidates {
			if !c.elected {
				// 1 / approval_stake == (DEN / approval_stake) / DEN. If approval_stake is zero,
				// then the ratio should be as large as possible, essentially `infinity`.
				if c.approval_stake.is_zero() {
					c.score = Rational128::from_unchecked(DEN, 0);
				} else {
					c.score = Rational128::from(DEN / c.approval_stake, DEN);
				}
			}
		}

		// loop 2: increment score
		for n in &voters {
			for e in &n.edges {
				let c = &mut candidates[e.candidate_index];
				if !c.elected && !c.approval_stake.is_zero() {
					let temp_n = multiply_by_rational(
						n.load.n(),
						n.budget,
						c.approval_stake,
					).unwrap_or_else(|_| Bounded::max_value());
					let temp_d = n.load.d();
					let temp = Rational128::from(temp_n, temp_d);
					c.score = c.score.lazy_saturating_add(temp);
				}
			}
		}

		// loop 3: find the best
		if let Some(winner) = candidates
			.iter_mut()
			.filter(|c| !c.elected)
			.min_by_key(|c| c.score)
		{
			// loop 3: update voter and edge load
			winner.elected = true;
			for n in &mut voters {
				for e in &mut n.edges {
					if e.who == winner.who {
						e.load = winner.score.lazy_saturating_sub(n.load);
						n.load = winner.score;
					}
				}
			}

			elected_candidates.push((winner.who.clone(), winner.approval_stake));
		} else {
			break
		}
	} // end of all rounds

	// update backing stake of candidates and voters
	for n in &mut voters {
		let mut assignment = Assignment {
			who: n.who.clone(),
			..Default::default()
		};
		for e in &mut n.edges {
			if elected_candidates.iter().position(|(ref c, _)| *c == e.who).is_some() {
				let per_bill_parts: R::Inner =
				{
					if n.load == e.load {
						// Full support. No need to calculate.
						R::ACCURACY
					} else {
						if e.load.d() == n.load.d() {
							// return e.load / n.load.
							let desired_scale: u128 = R::ACCURACY.saturated_into();
							let parts = multiply_by_rational(
								desired_scale,
								e.load.n(),
								n.load.n(),
							)
							// If result cannot fit in u128. Not much we can do about it.
							.unwrap_or_else(|_| Bounded::max_value());

							TryFrom::try_from(parts)
								// If the result cannot fit into R::Inner. Defensive only. This can
								// never happen. `desired_scale * e / n`, where `e / n < 1` always
								// yields a value smaller than `desired_scale`, which will fit into
								// R::Inner.
								.unwrap_or_else(|_| Bounded::max_value())
						} else {
							// defensive only. Both edge and voter loads are built from
							// scores, hence MUST have the same denominator.
							Zero::zero()
						}
					}
				};
				let per_thing = R::from_parts(per_bill_parts);
				assignment.distribution.push((e.who.clone(), per_thing));
			}
		}

		let len = assignment.distribution.len();
		if len > 0 {
			// To ensure an assertion indicating: no stake from the voter going to waste,
			// we add a minimal post-processing to equally assign all of the leftover stake ratios.
			let vote_count: R::Inner = len.saturated_into();
			let accuracy = R::ACCURACY;
			let mut sum: R::Inner = Zero::zero();
			assignment.distribution.iter().for_each(|a| sum = sum.saturating_add(a.1.deconstruct()));

			let diff = accuracy.saturating_sub(sum);
			let diff_per_vote = (diff / vote_count).min(accuracy);

			if !diff_per_vote.is_zero() {
				for i in 0..len {
					let current_ratio = assignment.distribution[i % len].1;
					let next_ratio = current_ratio
						.saturating_add(R::from_parts(diff_per_vote));
					assignment.distribution[i % len].1 = next_ratio;
				}
			}

			// `remainder` is set to be less than maximum votes of a voter (currently 16).
			// safe to cast it to usize.
			let remainder = diff - diff_per_vote * vote_count;
			for i in 0..remainder.saturated_into::<usize>() {
				let current_ratio = assignment.distribution[i % len].1;
				let next_ratio = current_ratio.saturating_add(R::from_parts(1u8.into()));
				assignment.distribution[i % len].1 = next_ratio;
			}
			assigned.push(assignment);
		}
	}

	Some(ElectionResult {
		winners: elected_candidates,
		assignments: assigned,
	})
}

/// Build the support map from the given election result. It maps a flat structure like
///
/// ```nocompile
/// assignments: vec![
/// 	voter1, vec![(candidate1, w11), (candidate2, w12)],
/// 	voter2, vec![(candidate1, w21), (candidate2, w22)]
/// ]
/// ```
///
/// into a mapping of candidates and their respective support:
///
/// ```nocompile
///  SupportMap {
/// 	candidate1: Support {
/// 		own:0,
/// 		total: w11 + w21,
/// 		others: vec![(candidate1, w11), (candidate2, w21)]
///		},
/// 	candidate2: Support {
/// 		own:0,
/// 		total: w12 + w22,
/// 		others: vec![(candidate1, w12), (candidate2, w22)]
///		},
/// }
/// ```
///
/// The second returned flag indicates the number of edges who didn't corresponded to an actual
/// winner from the given winner set. A value in this place larger than 0 indicates a potentially
/// faulty assignment.
///
/// `O(E)` where `E` is the total number of edges.
pub fn build_support_map<AccountId>(
	winners: &[AccountId],
	assignments: &[StakedAssignment<AccountId>],
) -> (SupportMap<AccountId>, u32) where
	AccountId: Default + Ord + Clone,
{
	let mut errors = 0;
	// Initialize the support of each candidate.
	let mut supports = <SupportMap<AccountId>>::new();
	winners
		.iter()
		.for_each(|e| { supports.insert(e.clone(), Default::default()); });

	// build support struct.
	for StakedAssignment { who, distribution } in assignments.iter() {
		for (c, weight_extended) in distribution.iter() {
			if let Some(support) = supports.get_mut(c) {
				support.total = support.total.saturating_add(*weight_extended);
				support.voters.push((who.clone(), *weight_extended));
			} else {
				errors = errors.saturating_add(1);
			}
		}
	}
	(supports, errors)
}

/// Evaluate a support map. The returned tuple contains:
///
/// - Minimum support. This value must be **maximized**.
/// - Sum of all supports. This value must be **maximized**.
/// - Sum of all supports squared. This value must be **minimized**.
///
/// `O(E)` where `E` is the total number of edges.
pub fn evaluate_support<AccountId>(
	support: &SupportMap<AccountId>,
) -> ElectionScore {
	let mut min_support = ExtendedBalance::max_value();
	let mut sum: ExtendedBalance = Zero::zero();
	// NOTE: The third element might saturate but fine for now since this will run on-chain and need
	// to be fast.
	let mut sum_squared: ExtendedBalance = Zero::zero();
	for (_, support) in support.iter() {
		sum = sum.saturating_add(support.total);
		let squared = support.total.saturating_mul(support.total);
		sum_squared = sum_squared.saturating_add(squared);
		if support.total < min_support {
			min_support = support.total;
		}
	}
	[min_support, sum, sum_squared]
}

/// Compares two sets of election scores based on desirability and returns true if `this` is
/// better than `that`.
///
/// Evaluation is done in a lexicographic manner, and if each element of `this` is `that * epsilon`
/// greater or less than `that`.
///
/// Note that the third component should be minimized.
pub fn is_score_better<P: PerThing>(this: ElectionScore, that: ElectionScore, epsilon: P) -> bool
	where ExtendedBalance: From<sp_arithmetic::InnerOf<P>>
{
	match this
		.iter()
		.enumerate()
		.map(|(i, e)| (
			e.ge(&that[i]),
			e.tcmp(&that[i], epsilon.mul_ceil(that[i])),
		))
		.collect::<Vec<(bool, Ordering)>>()
		.as_slice()
	{
		// epsilon better in the score[0], accept.
		[(_, Ordering::Greater), _, _] => true,

		// less than epsilon better in score[0], but more than epsilon better in the second.
		[(true, Ordering::Equal), (_, Ordering::Greater), _] => true,

		// less than epsilon better in score[0, 1], but more than epsilon better in the third
		[(true, Ordering::Equal), (true, Ordering::Equal), (_, Ordering::Less)] => true,

		// anything else is not a good score.
		_ => false,
	}
}

/// Performs balancing post-processing to the output of the election algorithm. This happens in
/// rounds. The number of rounds and the maximum diff-per-round tolerance can be tuned through input
/// parameters.
///
/// Returns the number of iterations that were preformed.
///
/// - `assignments`: exactly the same as the output of [`seq_phragmen`].
/// - `supports`: mutable reference to s `SupportMap`. This parameter is updated.
/// - `tolerance`: maximum difference that can occur before an early quite happens.
/// - `iterations`: maximum number of iterations that will be processed.
pub fn balance_solution<AccountId>(
	assignments: &mut Vec<StakedAssignment<AccountId>>,
	supports: &mut SupportMap<AccountId>,
	tolerance: ExtendedBalance,
	iterations: usize,
) -> usize where AccountId: Ord + Clone {
	if iterations == 0 { return 0; }

	let mut i = 0 ;
	loop {
		let mut max_diff = 0;
		for assignment in assignments.iter_mut() {
			let voter_budget = assignment.total();
			let StakedAssignment { who, distribution } =  assignment;
			let diff = do_balancing(
				who,
				voter_budget,
				distribution,
				supports,
				tolerance,
			);
			if diff > max_diff { max_diff = diff; }
		}

		i += 1;
		if max_diff <= tolerance || i >= iterations {
			break i;
		}
	}
}

/// actually perform balancing. same interface is `balance_solution`. Just called in loops with a check for
/// maximum difference.
fn do_balancing<AccountId>(
	voter: &AccountId,
	budget: ExtendedBalance,
	elected_edges: &mut Vec<(AccountId, ExtendedBalance)>,
	support_map: &mut SupportMap<AccountId>,
	tolerance: ExtendedBalance
) -> ExtendedBalance where AccountId: Ord + Clone {
	// Nothing to do. This voter had nothing useful.
	// Defensive only. Assignment list should always be populated. 1 might happen for self vote.
	if elected_edges.is_empty() || elected_edges.len() == 1 { return 0; }

	let stake_used = elected_edges
		.iter()
		.fold(0 as ExtendedBalance, |s, e| s.saturating_add(e.1));

	let backed_stakes_iter = elected_edges
		.iter()
		.filter_map(|e| support_map.get(&e.0))
		.map(|e| e.total);

	let backing_backed_stake = elected_edges
		.iter()
		.filter(|e| e.1 > 0)
		.filter_map(|e| support_map.get(&e.0))
		.map(|e| e.total)
		.collect::<Vec<ExtendedBalance>>();

	let mut difference;
	if backing_backed_stake.len() > 0 {
		let max_stake = backing_backed_stake
			.iter()
			.max()
			.expect("vector with positive length will have a max; qed");
		let min_stake = backed_stakes_iter
			.min()
			.expect("iterator with positive length will have a min; qed");

		difference = max_stake.saturating_sub(min_stake);
		difference = difference.saturating_add(budget.saturating_sub(stake_used));
		if difference < tolerance {
			return difference;
		}
	} else {
		difference = budget;
	}

	// Undo updates to support
	elected_edges.iter_mut().for_each(|e| {
		if let Some(support) = support_map.get_mut(&e.0) {
			support.total = support.total.saturating_sub(e.1);
			support.voters.retain(|i_support| i_support.0 != *voter);
		}
		e.1 = 0;
	});

	elected_edges.sort_by_key(|e|
		if let Some(e) = support_map.get(&e.0) { e.total } else { Zero::zero() }
	);

	let mut cumulative_stake: ExtendedBalance = 0;
	let mut last_index = elected_edges.len() - 1;
	let mut idx = 0usize;
	for e in &mut elected_edges[..] {
		if let Some(support) = support_map.get_mut(&e.0) {
			let stake = support.total;
			let stake_mul = stake.saturating_mul(idx as ExtendedBalance);
			let stake_sub = stake_mul.saturating_sub(cumulative_stake);
			if stake_sub > budget {
				last_index = idx.checked_sub(1).unwrap_or(0);
				break;
			}
			cumulative_stake = cumulative_stake.saturating_add(stake);
		}
		idx += 1;
	}

	let last_stake = elected_edges[last_index].1;
	let split_ways = last_index + 1;
	let excess = budget
		.saturating_add(cumulative_stake)
		.saturating_sub(last_stake.saturating_mul(split_ways as ExtendedBalance));
	elected_edges.iter_mut().take(split_ways).for_each(|e| {
		if let Some(support) = support_map.get_mut(&e.0) {
			e.1 = (excess / split_ways as ExtendedBalance)
				.saturating_add(last_stake)
				.saturating_sub(support.total);
			support.total = support.total.saturating_add(e.1);
			support.voters.push((voter.clone(), e.1));
		}
	});

	difference
}