1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Merkle Mountain Range utilities.

use codec::Encode;
use mmr_lib::helper;

#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
use sp_runtime::traits::{CheckedAdd, CheckedSub, Header, One};

use crate::{Error, LeafIndex, NodeIndex};

/// Get the first block with MMR.
pub fn first_mmr_block_num<H: Header>(
	best_block_num: H::Number,
	mmr_leaf_count: LeafIndex,
) -> Result<H::Number, Error> {
	let mmr_blocks_count = mmr_leaf_count.try_into().map_err(|_| {
		Error::InvalidNumericOp
			.log_debug("The number of leaves couldn't be converted to a block number.")
	})?;
	best_block_num
		.checked_sub(&mmr_blocks_count)
		.and_then(|last_non_mmr_block| last_non_mmr_block.checked_add(&One::one()))
		.ok_or_else(|| {
			Error::InvalidNumericOp
				.log_debug("The best block should be greater than the number of mmr blocks.")
		})
}

/// Convert a block number into a leaf index.
pub fn block_num_to_leaf_index<H: Header>(
	block_num: H::Number,
	first_mmr_block_num: H::Number,
) -> Result<LeafIndex, Error> {
	let leaf_idx = block_num.checked_sub(&first_mmr_block_num).ok_or_else(|| {
		Error::InvalidNumericOp
			.log_debug("The provided block should be greater than the first mmr block.")
	})?;

	leaf_idx.try_into().map_err(|_| {
		Error::InvalidNumericOp.log_debug("Couldn't convert the leaf index to `LeafIndex`.")
	})
}

/// MMR nodes & size -related utilities.
pub struct NodesUtils {
	no_of_leaves: LeafIndex,
}

impl NodesUtils {
	/// Create new instance of MMR nodes utilities for given number of leaves.
	pub fn new(no_of_leaves: LeafIndex) -> Self {
		Self { no_of_leaves }
	}

	/// Calculate number of peaks in the MMR.
	pub fn number_of_peaks(&self) -> NodeIndex {
		self.number_of_leaves().count_ones() as NodeIndex
	}

	/// Return the number of leaves in the MMR.
	pub fn number_of_leaves(&self) -> LeafIndex {
		self.no_of_leaves
	}

	/// Calculate the total size of MMR (number of nodes).
	pub fn size(&self) -> NodeIndex {
		2 * self.no_of_leaves - self.number_of_peaks()
	}

	/// Calculate `LeafIndex` for the leaf that added `node_index` to the MMR.
	pub fn leaf_index_that_added_node(node_index: NodeIndex) -> LeafIndex {
		let rightmost_leaf_pos = Self::rightmost_leaf_node_index_from_pos(node_index);
		Self::leaf_node_index_to_leaf_index(rightmost_leaf_pos)
	}

	// Translate a _leaf_ `NodeIndex` to its `LeafIndex`.
	fn leaf_node_index_to_leaf_index(pos: NodeIndex) -> LeafIndex {
		if pos == 0 {
			return 0
		}
		let peaks = helper::get_peaks(pos);
		(pos + peaks.len() as u64) >> 1
	}

	// Starting from any node position get position of rightmost leaf; this is the leaf
	// responsible for the addition of node `pos`.
	fn rightmost_leaf_node_index_from_pos(pos: NodeIndex) -> NodeIndex {
		pos - (helper::pos_height_in_tree(pos) as u64)
	}

	/// Starting from any leaf index, get the sequence of positions of the nodes added
	/// to the mmr when this leaf was added (inclusive of the leaf's position itself).
	/// That is, all of these nodes are right children of their respective parents.
	pub fn right_branch_ending_in_leaf(leaf_index: LeafIndex) -> Vec<NodeIndex> {
		let pos = helper::leaf_index_to_pos(leaf_index);
		let num_parents = leaf_index.trailing_ones() as u64;
		return (pos..=pos + num_parents).collect()
	}

	/// Build offchain key from `parent_hash` of block that originally added node `pos` to MMR.
	///
	/// This combination makes the offchain (key,value) entry resilient to chain forks.
	pub fn node_temp_offchain_key<H: Header>(
		prefix: &[u8],
		pos: NodeIndex,
		parent_hash: H::Hash,
	) -> Vec<u8> {
		(prefix, pos, parent_hash).encode()
	}

	/// Build canonical offchain key for node `pos` in MMR.
	///
	/// Used for nodes added by now finalized blocks.
	/// Never read keys using `node_canon_offchain_key` unless you sure that
	/// there's no `node_offchain_key` key in the storage.
	pub fn node_canon_offchain_key(prefix: &[u8], pos: NodeIndex) -> alloc::vec::Vec<u8> {
		(prefix, pos).encode()
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use mmr_lib::helper::leaf_index_to_pos;

	#[test]
	fn should_calculate_node_index_from_leaf_index() {
		for index in 0..100000 {
			let pos = leaf_index_to_pos(index);
			assert_eq!(NodesUtils::leaf_node_index_to_leaf_index(pos), index);
		}
	}

	#[test]
	fn should_calculate_right_branch_correctly() {
		fn left_jump_sequence(leaf_index: LeafIndex) -> Vec<u64> {
			let pos = leaf_index_to_pos(leaf_index);
			let mut right_branch_ending_in_leaf = vec![pos];
			let mut next_pos = pos + 1;
			while mmr_lib::helper::pos_height_in_tree(next_pos) > 0 {
				right_branch_ending_in_leaf.push(next_pos);
				next_pos += 1;
			}
			right_branch_ending_in_leaf
		}

		for leaf_index in 0..100000 {
			let pos = mmr_lib::helper::leaf_index_to_pos(leaf_index);
			assert_eq!(NodesUtils::right_branch_ending_in_leaf(pos), left_jump_sequence(pos));
		}
	}

	#[test]
	fn should_calculate_rightmost_leaf_node_index_from_pos() {
		for pos in 0..100000 {
			let leaf_pos = NodesUtils::rightmost_leaf_node_index_from_pos(pos);
			let leaf_index = NodesUtils::leaf_node_index_to_leaf_index(leaf_pos);
			assert!(NodesUtils::right_branch_ending_in_leaf(leaf_index).contains(&pos));
		}
	}

	#[test]
	fn should_calculate_depth_correctly() {
		assert_eq!(
			vec![0, 1, 2, 3, 4, 9, 15, 21]
				.into_iter()
				.map(|n| NodesUtils::new(n).number_of_leaves())
				.collect::<Vec<_>>(),
			vec![0, 1, 2, 3, 4, 9, 15, 21]
		);
	}

	#[test]
	fn should_calculate_number_of_peaks_correctly() {
		assert_eq!(
			vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 21]
				.into_iter()
				.map(|n| NodesUtils::new(n).number_of_peaks())
				.collect::<Vec<_>>(),
			vec![0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 3]
		);
	}

	#[test]
	fn should_calculate_the_size_correctly() {
		let leaves = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 21];
		let sizes = vec![0, 1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 26, 39];
		assert_eq!(
			leaves
				.clone()
				.into_iter()
				.map(|n| NodesUtils::new(n).size())
				.collect::<Vec<_>>(),
			sizes.clone()
		);
	}
}