1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright 2018-2020 Parity Technologies (UK) Ltd.
// This file is part of Substrate.

// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Substrate.  If not, see <http://www.gnu.org/licenses/>.

//! Primitives for GRANDPA integration, suitable for WASM compilation.

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(feature = "std")]
use serde::Serialize;
use codec::{Encode, Decode, Input, Codec};
use sp_runtime::{ConsensusEngineId, RuntimeDebug};
use sp_std::borrow::Cow;
use sp_std::vec::Vec;

mod app {
	use sp_application_crypto::{app_crypto, key_types::GRANDPA, ed25519};
	app_crypto!(ed25519, GRANDPA);
}

sp_application_crypto::with_pair! {
	/// The grandpa crypto scheme defined via the keypair type.
	pub type AuthorityPair = app::Pair;
}

/// Identity of a Grandpa authority.
pub type AuthorityId = app::Public;

/// Signature for a Grandpa authority.
pub type AuthoritySignature = app::Signature;

/// The `ConsensusEngineId` of GRANDPA.
pub const GRANDPA_ENGINE_ID: ConsensusEngineId = *b"FRNK";

/// The storage key for the current set of weighted Grandpa authorities.
/// The value stored is an encoded VersionedAuthorityList.
pub const GRANDPA_AUTHORITIES_KEY: &'static [u8] = b":grandpa_authorities";

/// The weight of an authority.
pub type AuthorityWeight = u64;

/// The index of an authority.
pub type AuthorityIndex = u64;

/// The monotonic identifier of a GRANDPA set of authorities.
pub type SetId = u64;

/// The round indicator.
pub type RoundNumber = u64;

/// A list of Grandpa authorities with associated weights.
pub type AuthorityList = Vec<(AuthorityId, AuthorityWeight)>;

/// A scheduled change of authority set.
#[cfg_attr(feature = "std", derive(Serialize))]
#[derive(Clone, Eq, PartialEq, Encode, Decode, RuntimeDebug)]
pub struct ScheduledChange<N> {
	/// The new authorities after the change, along with their respective weights.
	pub next_authorities: AuthorityList,
	/// The number of blocks to delay.
	pub delay: N,
}

/// An consensus log item for GRANDPA.
#[cfg_attr(feature = "std", derive(Serialize))]
#[derive(Decode, Encode, PartialEq, Eq, Clone, RuntimeDebug)]
pub enum ConsensusLog<N: Codec> {
	/// Schedule an authority set change.
	///
	/// The earliest digest of this type in a single block will be respected,
	/// provided that there is no `ForcedChange` digest. If there is, then the
	/// `ForcedChange` will take precedence.
	///
	/// No change should be scheduled if one is already and the delay has not
	/// passed completely.
	///
	/// This should be a pure function: i.e. as long as the runtime can interpret
	/// the digest type it should return the same result regardless of the current
	/// state.
	#[codec(index = "1")]
	ScheduledChange(ScheduledChange<N>),
	/// Force an authority set change.
	///
	/// Forced changes are applied after a delay of _imported_ blocks,
	/// while pending changes are applied after a delay of _finalized_ blocks.
	///
	/// The earliest digest of this type in a single block will be respected,
	/// with others ignored.
	///
	/// No change should be scheduled if one is already and the delay has not
	/// passed completely.
	///
	/// This should be a pure function: i.e. as long as the runtime can interpret
	/// the digest type it should return the same result regardless of the current
	/// state.
	#[codec(index = "2")]
	ForcedChange(N, ScheduledChange<N>),
	/// Note that the authority with given index is disabled until the next change.
	#[codec(index = "3")]
	OnDisabled(AuthorityIndex),
	/// A signal to pause the current authority set after the given delay.
	/// After finalizing the block at _delay_ the authorities should stop voting.
	#[codec(index = "4")]
	Pause(N),
	/// A signal to resume the current authority set after the given delay.
	/// After authoring the block at _delay_ the authorities should resume voting.
	#[codec(index = "5")]
	Resume(N),
}

impl<N: Codec> ConsensusLog<N> {
	/// Try to cast the log entry as a contained signal.
	pub fn try_into_change(self) -> Option<ScheduledChange<N>> {
		match self {
			ConsensusLog::ScheduledChange(change) => Some(change),
			_ => None,
		}
	}

	/// Try to cast the log entry as a contained forced signal.
	pub fn try_into_forced_change(self) -> Option<(N, ScheduledChange<N>)> {
		match self {
			ConsensusLog::ForcedChange(median, change) => Some((median, change)),
			_ => None,
		}
	}

	/// Try to cast the log entry as a contained pause signal.
	pub fn try_into_pause(self) -> Option<N> {
		match self {
			ConsensusLog::Pause(delay) => Some(delay),
			_ => None,
		}
	}

	/// Try to cast the log entry as a contained resume signal.
	pub fn try_into_resume(self) -> Option<N> {
		match self {
			ConsensusLog::Resume(delay) => Some(delay),
			_ => None,
		}
	}
}

/// WASM function call to check for pending changes.
pub const PENDING_CHANGE_CALL: &str = "grandpa_pending_change";
/// WASM function call to get current GRANDPA authorities.
pub const AUTHORITIES_CALL: &str = "grandpa_authorities";

/// The current version of the stored AuthorityList type. The encoding version MUST be updated any
/// time the AuthorityList type changes.
const AUTHORITIES_VERSION: u8 = 1;

/// An AuthorityList that is encoded with a version specifier. The encoding version is updated any
/// time the AuthorityList type changes. This ensures that encodings of different versions of an
/// AuthorityList are differentiable. Attempting to decode an authority list with an unknown
/// version will fail.
#[derive(Default)]
pub struct VersionedAuthorityList<'a>(Cow<'a, AuthorityList>);

impl<'a> From<AuthorityList> for VersionedAuthorityList<'a> {
	fn from(authorities: AuthorityList) -> Self {
		VersionedAuthorityList(Cow::Owned(authorities))
	}
}

impl<'a> From<&'a AuthorityList> for VersionedAuthorityList<'a> {
	fn from(authorities: &'a AuthorityList) -> Self {
		VersionedAuthorityList(Cow::Borrowed(authorities))
	}
}

impl<'a> Into<AuthorityList> for VersionedAuthorityList<'a> {
	fn into(self) -> AuthorityList {
		self.0.into_owned()
	}
}

impl<'a> Encode for VersionedAuthorityList<'a> {
	fn size_hint(&self) -> usize {
		(AUTHORITIES_VERSION, self.0.as_ref()).size_hint()
	}

	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
		(AUTHORITIES_VERSION, self.0.as_ref()).using_encoded(f)
	}
}

impl<'a> Decode for VersionedAuthorityList<'a> {
	fn decode<I: Input>(value: &mut I) -> Result<Self, codec::Error> {
		let (version, authorities): (u8, AuthorityList) = Decode::decode(value)?;
		if version != AUTHORITIES_VERSION {
			return Err("unknown Grandpa authorities version".into());
		}
		Ok(authorities.into())
	}
}

sp_api::decl_runtime_apis! {
	/// APIs for integrating the GRANDPA finality gadget into runtimes.
	/// This should be implemented on the runtime side.
	///
	/// This is primarily used for negotiating authority-set changes for the
	/// gadget. GRANDPA uses a signaling model of changing authority sets:
	/// changes should be signaled with a delay of N blocks, and then automatically
	/// applied in the runtime after those N blocks have passed.
	///
	/// The consensus protocol will coordinate the handoff externally.
	#[api_version(2)]
	pub trait GrandpaApi {
		/// Get the current GRANDPA authorities and weights. This should not change except
		/// for when changes are scheduled and the corresponding delay has passed.
		///
		/// When called at block B, it will return the set of authorities that should be
		/// used to finalize descendants of this block (B+1, B+2, ...). The block B itself
		/// is finalized by the authorities from block B-1.
		fn grandpa_authorities() -> AuthorityList;
	}
}