1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//! Indexes that are specific to a sounding, but not a particular parcel analysis of that sounding.

use crate::{
    error::{AnalysisError, Result},
    interpolation::linear_interpolate_sounding,
    sounding::Sounding,
};
use itertools::{izip, Itertools};
use metfor::{
    mixing_ratio, vapor_pressure_liquid_water, Celsius, HectoPascal, Meters, MetersPSec, Mm,
    Quantity,
};

/// Precipitable water (mm)
#[inline]
pub fn precipitable_water(snd: &Sounding) -> Result<Mm> {
    let p_profile = snd.pressure_profile();
    let dp_profile = snd.dew_point_profile();

    let integrated_mw = izip!(p_profile, dp_profile)
        // Remove levels with missing data
        .filter(|(p, dp)| p.is_some() && dp.is_some())
        // Unpack from the Optioned type
        .map(|(p, dp)| (p.unpack(), dp.unpack()))
        // Converte dew point to mixing ratio, removing failed levels.
        .filter_map(|(p, dp)| mixing_ratio(dp, p).map(|mw| (p, mw)))
        // View them as pairs for integration with the trapezoid method
        .tuple_windows::<(_, _)>()
        // Do the sum for integrating
        .fold(0.0, |mut acc_mw, ((p0, mw0), (p1, mw1))| {
            let dp = p0 - p1;
            acc_mw += (mw0 + mw1) * dp.unpack();

            acc_mw
        });

    Ok(Mm(integrated_mw / 9.81 / 997.0 * 100_000.0 / 2.0))
}

/// The Haines index for fire weather.
#[inline]
pub fn haines(snd: &Sounding) -> Result<u8> {
    snd.station_info()
        .elevation()
        .into_option()
        .ok_or(AnalysisError::MissingValue)
        .and_then(|elev| {
            if elev <= Meters(304.8) {
                haines_low(snd)
            } else if elev <= Meters(914.4) {
                haines_mid(snd)
            } else {
                haines_high(snd)
            }
        })
}

/// The low level version of the Haines index for fire weather.
#[inline]
pub fn haines_low(snd: &Sounding) -> Result<u8> {
    let level1 = linear_interpolate_sounding(snd, HectoPascal(950.0))
        .map_err(|_| AnalysisError::MissingValue)?;
    let level2 = linear_interpolate_sounding(snd, HectoPascal(850.0))
        .map_err(|_| AnalysisError::MissingValue)?;

    let Celsius(t_low) = level1.temperature.ok_or(AnalysisError::MissingValue)?;
    let Celsius(t_hi) = level2.temperature.ok_or(AnalysisError::MissingValue)?;
    let Celsius(dp_hi) = level2.dew_point.ok_or(AnalysisError::MissingValue)?;

    let stability_term = (t_low - t_hi).round();
    let stability_term = if stability_term >= 8.0 {
        3
    } else if stability_term > 3.0 {
        2
    } else {
        1
    };

    let moisture_term = (t_hi - dp_hi).round();
    let moisture_term = if moisture_term >= 10.0 {
        3
    } else if moisture_term > 5.0 {
        2
    } else {
        1
    };

    Ok(stability_term + moisture_term)
}

/// The mid level version of the Haines index for fire weather.
#[inline]
pub fn haines_mid(snd: &Sounding) -> Result<u8> {
    let level1 = linear_interpolate_sounding(snd, HectoPascal(850.0))
        .map_err(|_| AnalysisError::MissingValue)?;
    let level2 = linear_interpolate_sounding(snd, HectoPascal(700.0))
        .map_err(|_| AnalysisError::MissingValue)?;

    let Celsius(t_low) = level1.temperature.ok_or(AnalysisError::MissingValue)?;
    let Celsius(t_hi) = level2.temperature.ok_or(AnalysisError::MissingValue)?;
    let Celsius(dp_low) = level1.dew_point.ok_or(AnalysisError::MissingValue)?;

    let stability_term = (t_low - t_hi).round();
    let stability_term = if stability_term >= 11.0 {
        3
    } else if stability_term > 5.0 {
        2
    } else {
        1
    };

    let moisture_term = (t_low - dp_low).round();
    let moisture_term = if moisture_term >= 13.0 {
        3
    } else if moisture_term > 5.0 {
        2
    } else {
        1
    };

    Ok(stability_term + moisture_term)
}

/// The high level version of the Haines index for fire weather.
#[inline]
pub fn haines_high(snd: &Sounding) -> Result<u8> {
    let level1 = linear_interpolate_sounding(snd, HectoPascal(700.0))
        .map_err(|_| AnalysisError::MissingValue)?;
    let level2 = linear_interpolate_sounding(snd, HectoPascal(500.0))
        .map_err(|_| AnalysisError::MissingValue)?;

    let Celsius(t_low) = level1.temperature.ok_or(AnalysisError::MissingValue)?;
    let Celsius(t_hi) = level2.temperature.ok_or(AnalysisError::MissingValue)?;
    let Celsius(dp_low) = level1.dew_point.ok_or(AnalysisError::MissingValue)?;

    let stability_term = (t_low - t_hi).round();
    let stability_term = if stability_term >= 22.0 {
        3
    } else if stability_term > 17.0 {
        2
    } else {
        1
    };

    let moisture_term = (t_low - dp_low).round();
    let moisture_term = if moisture_term >= 21.0 {
        3
    } else if moisture_term > 14.0 {
        2
    } else {
        1
    };

    Ok(stability_term + moisture_term)
}

/// The Hot-Dry-Windy index
#[inline]
pub fn hot_dry_windy(snd: &Sounding) -> Result<f64> {
    let elevation = if let Some(sfc_h) = snd.station_info().elevation().into_option() {
        sfc_h
    } else if let Some(lowest_h) = snd
        .height_profile()
        .iter()
        .filter_map(|optd| optd.into_option())
        .nth(0)
    {
        lowest_h
    } else {
        return Err(AnalysisError::NotEnoughData);
    };

    let h_profile = snd.height_profile();
    let t_profile = snd.temperature_profile();
    let dp_profile = snd.dew_point_profile();
    let ws_profile = snd.wind_profile();

    let (vpd, ws) = izip!(h_profile, t_profile, dp_profile, ws_profile)
        // Remove rows with missing data
        .filter(|(h, t, dp, ws)| h.is_some() && t.is_some() && dp.is_some() && ws.is_some())
        // Unpack from the Optioned type
        .map(|(h, t, dp, ws)| (h.unpack(), t.unpack(), dp.unpack(), ws.unpack().speed))
        // Only look up to 500 m above AGL
        .take_while(|(h, _, _, _)| *h <= elevation + Meters(500.0))
        // Convert t and dp to VPD, and remove any levels that error on calculating vapor pressure
        .filter_map(|(_, t, dp, ws)| {
            vapor_pressure_liquid_water(t).and_then(|sat_vap| {
                vapor_pressure_liquid_water(dp).map(|vap| (sat_vap - vap, ws))
            })
        })
        // Convert knots to m/s and unpack all values from their Quantity types
        .map(|(vpd, ws)| (vpd.unpack(), MetersPSec::from(ws).unpack()))
        // Choose the max.
        .fold((0.0, 0.0), |(vpd_max, ws_max), (vpd, ws)| {
            (vpd.max(vpd_max), ws.max(ws_max))
        });

    Ok(vpd * ws)
}