1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use crate::{
    error::{AnalysisError, Result},
    layers::{self, Layer},
    levels::height_level,
};
use itertools::{izip, Itertools};
use metfor::{IntHelicityM2pS2, Knots, Meters, MetersPSec, Quantity, WindSpdDir, WindUV};
use optional::some;
use sounding_base::Sounding;
use std::iter::once;

/// Calculate the mean wind in a layer.
///
/// This is not the pressure weighted mean.
///
pub fn mean_wind(layer: &Layer, snd: &Sounding) -> Result<WindUV<MetersPSec>> {
    let height = snd.height_profile();
    let wind = snd.wind_profile();

    let max_hgt = layer.top.height.ok_or(AnalysisError::MissingProfile)?;
    let min_hgt = layer.bottom.height.ok_or(AnalysisError::MissingProfile)?;

    let bottom_wind = layer.bottom.wind;
    let top_wind = layer.top.wind;

    let (mut iu, mut iv, dz) =
        // Start at the bottom of the layer
        once((&some(min_hgt), &bottom_wind))
        // Add in any intermediate layers
        .chain(izip!(height, wind))
        // Finish with the top layer
        .chain(once((&some(max_hgt), &top_wind)))
        // Filter out missing values
        .filter_map(|(hgt, wind)| hgt.into_option().and_then(|h| wind.map(|w| (h, w))))
        // Skip values below the layer
        .skip_while(|&(hgt, _)| hgt < min_hgt)
        // Only take values below the top of the layer
        .take_while(|&(hgt, _)| hgt <= max_hgt)
        // Get the wind u-v components in m/s
        .map(|(hgt, wind)| {
            let WindUV { u, v } = WindUV::<MetersPSec>::from(wind);
            (hgt, u, v)
        })
        // Make windows to see two points at a time for trapezoid rule integration
        .tuple_windows::<(_, _)>()
        // Integration with the trapezoid rule to find the mean value
        .fold(
            (
                MetersPSec(0.0), // integrated u component so far
                MetersPSec(0.0), // integrated v component so far
                Meters(0.0),     // the total distance integrated so far
            ),
            |acc, ((h0, u0, v0), (h1, u1, v1))| {
                let (mut iu, mut iv, mut acc_dz) = acc;

                let dz = h1 - h0;

                iu += (u0 + u1) * dz.unpack();
                iv += (v0 + v1) * dz.unpack();
                acc_dz += dz;

                (iu, iv, acc_dz)
            },
        );

    if dz == Meters(0.0) {
        // nothing was done, 1 or zero points in the layer
        return Err(AnalysisError::NotEnoughData);
    } else {
        // we integrated, so divide by height and constant of 2 for trapezoid rule
        iu /= 2.0 * dz.unpack();
        iv /= 2.0 * dz.unpack();
    }

    Ok(WindUV { u: iu, v: iv })
}

/// Storm relative helicity.
pub fn sr_helicity<W>(
    layer: &Layer,
    storm_motion_uv_ms: W,
    snd: &Sounding,
) -> Result<IntHelicityM2pS2>
where
    WindUV<MetersPSec>: From<W>,
{
    let height = snd.height_profile();
    let wind = snd.wind_profile();
    let storm_motion_uv_ms = WindUV::<MetersPSec>::from(storm_motion_uv_ms);

    let bottom = layer.bottom.height.ok_or(AnalysisError::MissingValue)?;
    let top = layer.top.height.ok_or(AnalysisError::MissingValue)?;

    izip!(height, wind)
        // Filter out levels with missing values
        .filter_map(|(h, w)| {
            if let (Some(h), Some(w)) = (h.into_option(), w.into_option()) {
                Some((h, w))
            } else {
                None
            }
        })
        // Convert the wind and unpack it, subtract the storm motion.
        .map(|(h, w)| {
            let WindUV { u, v }: WindUV<MetersPSec> = From::<WindSpdDir<Knots>>::from(w);
            (h, (u - storm_motion_uv_ms.u), (v - storm_motion_uv_ms.v))
        })
        // Make windows so I can see three at a time
        .tuple_windows::<(_, _, _)>()
        // Skip levels where the middle of the window is below the bottom of the layer.
        .skip_while(|(_, (h, _, _), _)| *h < bottom)
        // Take until the middle of the window is at the top of the layer.
        .take_while(|(_, (h, _, _), _)| *h <= top)
        // Add in the derivative information
        .map(|((h0, u0, v0), (h1, u1, v1), (h2, u2, v2))| {
            let dz = (h2 - h0).unpack();
            let du = (u2 - u0).unpack() / dz;
            let dv = (v2 - v0).unpack() / dz;
            (h1, u1, v1, du, dv)
        })
        // Calculate the helicity (not, this is not the integrated helicity yet)
        .map(|(z, u, v, du, dv)| (z, u * dv - v * du))
        // Make a window so I can see two at a time for integrating with the trapezoid rule
        .tuple_windows::<(_, _)>()
        // Integrate with the trapezoidal rule
        .fold(Err(AnalysisError::NotEnoughData), |acc, (lvl0, lvl1)| {
            let mut integrated_helicity: f64 = acc.unwrap_or(0.0);
            let (z0, h0) = lvl0;
            let (z1, h1) = lvl1;

            let h = (h0 + h1).unpack() * (z1 - z0).unpack();
            integrated_helicity += h;

            Ok(integrated_helicity)
        })
        // Multiply by constant factors, -1 for the helicity formula, 2 for trapezoid rule,
        // and wrap in integrated helicity type
        .map(|integrated_helicity| IntHelicityM2pS2(-integrated_helicity / 2.0))
}

/// Calculate the super cell storm motion using the "id" method.
///
/// Returns the storm motions in m/s of the right and left mover cells.
/// (right mover, left mover)
pub fn bunkers_storm_motion(snd: &Sounding) -> Result<(WindUV<MetersPSec>, WindUV<MetersPSec>)> {
    let layer = &layers::layer_agl(snd, Meters(6000.0))?;

    let WindUV {
        u: mean_u,
        v: mean_v,
    } = mean_wind(layer, snd)?;

    let WindUV {
        u: shear_u,
        v: shear_v,
    } = bulk_shear_half_km(layer, snd)?;

    const D: f64 = 7.5; // m/s

    let scale = D / shear_u.unpack().hypot(shear_v.unpack());
    let (delta_u, delta_v) = (shear_v * scale, -shear_u * scale);

    Ok((
        WindUV {
            u: mean_u + delta_u,
            v: mean_v + delta_v,
        },
        WindUV {
            u: mean_u - delta_u,
            v: mean_v - delta_v,
        },
    ))
}

/// Calculate the bulk shear of a layer using winds averaged over the bottom and top half km.
///
/// When using the id method for storm motion vectors, the bulk shear was calculated with top and
/// bottom wind vectors that were averaged over top/bottom half km of the layer.
///
/// Returns `(shear_u_ms, shear_v_ms)`
pub(crate) fn bulk_shear_half_km(layer: &Layer, snd: &Sounding) -> Result<WindUV<MetersPSec>> {
    let bottom = layer
        .bottom
        .height
        .into_option()
        .ok_or(AnalysisError::MissingValue)?;
    let top = layer
        .top
        .height
        .into_option()
        .ok_or(AnalysisError::MissingValue)?;

    // abort if not at least 250 meters of non-overlapping area.
    if top - bottom < Meters(750.0) {
        return Err(AnalysisError::NotEnoughData);
    }

    let top_bottom_layer = height_level(bottom + Meters(500.0), snd)?;
    let bottom_layer = &Layer {
        top: top_bottom_layer,
        bottom: layer.bottom,
    };

    let WindUV {
        u: bottom_u,
        v: bottom_v,
    } = mean_wind(bottom_layer, snd)?;

    let bottom_top_layer = height_level(top - Meters(500.0), snd)?;
    let top_layer = &Layer {
        top: layer.top,
        bottom: bottom_top_layer,
    };

    let WindUV { u: top_u, v: top_v } = mean_wind(top_layer, snd)?;

    Ok(WindUV {
        u: top_u - bottom_u,
        v: top_v - bottom_v,
    })
}