1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//! An RDF graph, the central notion of the RDF data model,
//! is a collection of [triples](super::triple).
//!
//! This module provides [reusable abstractions](#traits)
//! for different kinds of graph,
//! as well as a few implementations for them.

use crate::dataset::adapter::GraphAsDataset;
use crate::source::{IntoTripleSource, StreamResult, TripleSource};
use crate::term::{matcher::TermMatcher, SimpleTerm, Term};
use crate::triple::Triple;
use resiter::{filter::*, flat_map::*, map::*};
use std::error::Error;

mod _foreign_impl;
pub mod adapter;
#[cfg(any(test, feature = "test_macro"))]
#[macro_use]
pub mod test;

/// Type alias for results produced by a graph.
pub type GResult<G, T> = Result<T, <G as Graph>::Error>;
/// Type alias for fallible triple iterators produced by a graph.
///
/// See [`Graph::triples`] for more information about how to use it.
pub type GTripleSource<'a, G> = Box<dyn Iterator<Item = GResult<G, <G as Graph>::Triple<'a>>> + 'a>;
/// Type alias for terms produced by a graph.
pub type GTerm<'a, G> = <<G as Graph>::Triple<'a> as Triple>::Term;
/// Type alias for fallible term iterators produced by a graph.
///
/// See [`Graph::subjects`] for more information about how to use it.
pub type GTermSource<'a, G> = Box<dyn Iterator<Item = GResult<G, GTerm<'a, G>>> + 'a>;

/// Generic trait for RDF graphs.
///
/// For convenience, this trait is implemented
/// by [standard collections of triples](#foreign-impls).
///
/// NB: the semantics of this trait allows a graph to contain duplicate triples;
/// see also [`SetGraph`].
pub trait Graph {
    /// Determine the type of [`Triple`]s
    /// that the methods of this graph will yield.
    type Triple<'x>: Triple
    where
        Self: 'x;
    /// The error type that this graph may raise.
    type Error: Error + 'static;

    /// An iterator visiting all triples of this graph in arbitrary order.
    ///
    /// This iterator is fallible:
    /// its items are `Result`s,
    /// an error may occur at any time during the iteration.
    ///
    /// # Examples
    ///
    /// The result of this method is an iterator,
    /// so it can be used in a `for` loop:
    /// ```
    /// # fn test() -> Result<(), Box<dyn std::error::Error>> {
    /// # use sophia_api::graph::Graph;
    /// # use sophia_api::term::SimpleTerm;
    /// # let graph = Vec::<[SimpleTerm;3]>::new();
    /// #
    /// for t in graph.triples() {
    ///     let t = t?; // rethrow error if any
    ///     // do something with t
    /// }
    /// #
    /// # Ok(())
    /// # }
    /// ```
    /// Another way is to use the specific methods provided by [`TripleSource`],
    /// for example:
    /// ```
    /// # use sophia_api::graph::Graph;
    /// # use sophia_api::term::SimpleTerm;
    /// # use sophia_api::source::TripleSource;
    /// # fn test() -> Result<(), Box<dyn std::error::Error>> {
    /// # let graph = Vec::<[SimpleTerm;3]>::new();
    /// #
    /// graph.triples().for_each_triple(|t| {
    ///     // do something with t
    /// })?; // rethrow error if any
    /// #
    /// # Ok(())
    /// # }
    /// ```
    fn triples(&self) -> GTripleSource<Self>;

    /// An iterator visiting all triples matching the given subject, predicate and object.
    /// See [`crate::term::matcher`].
    ///
    /// See also [`triples`](Graph::triples).
    ///
    /// # Usage
    ///
    /// Typical implementations of [`TermMatcher`] include arrays/slices of [`Term`]s,
    /// closure accepting a [`SimpleTerm`], or the special matcher [`Any`].
    ///
    /// [`Term`]: crate::term::Term
    /// [`SimpleTerm`]: crate::term::SimpleTerm
    /// [`Any`]: crate::term::matcher::Any
    /// ```
    /// # use sophia_api::prelude::*;
    /// # use sophia_api::ns::{Namespace, rdf};
    /// #
    /// # fn test<G: Graph>(graph: &G) -> Result<(), Box<dyn std::error::Error>>
    /// # where
    /// #     G: Graph,
    /// # {
    /// #
    /// let s = Namespace::new("http://schema.org/")?;
    /// let city = s.get("City")?;
    /// let country = s.get("Country")?;
    ///
    /// for t in graph.triples_matching(Any, [&rdf::type_], [city, country]) {
    ///     println!("{:?} was found", t?.s());
    /// }
    /// #
    /// # Ok(()) }
    /// ```
    ///
    /// Here is another example using a closure as a [`TermMatcher`].
    ///
    /// ```
    /// # use sophia_api::prelude::*;
    /// # use sophia_api::ns::rdfs;
    /// # use sophia_api::term::SimpleTerm;
    /// #
    /// # fn test<G>(graph: &G) -> Result<(), Box<dyn std::error::Error>>
    /// # where
    /// #     G: Graph,
    /// # {
    /// #
    /// for t in graph.triples_matching(
    ///     Any,
    ///     [&rdfs::label],
    ///     |t: SimpleTerm| t.lexical_form().map(|v| v.contains("needle")).unwrap_or(false),
    /// ) {
    ///     println!("{:?} was found", t?.s());
    /// }
    /// #
    /// # Ok(()) }
    /// ```
    fn triples_matching<'s, S, P, O>(&'s self, sm: S, pm: P, om: O) -> GTripleSource<'s, Self>
    where
        S: TermMatcher + 's,
        P: TermMatcher + 's,
        O: TermMatcher + 's,
    {
        Box::new(
            self.triples().filter_ok(move |t| {
                t.matched_by(sm.matcher_ref(), pm.matcher_ref(), om.matcher_ref())
            }),
        )
    }

    /// Return `true` if this graph contains the given triple.
    fn contains<TS, TP, TO>(&self, s: TS, p: TP, o: TO) -> GResult<Self, bool>
    where
        TS: Term,
        TP: Term,
        TO: Term,
    {
        self.triples_matching([s], [p], [o])
            .next()
            .transpose()
            .map(|o| o.is_some())
    }

    /// Build a fallible iterator of all the terms used as subject in this Graph.
    ///
    /// NB: implementations SHOULD avoid yielding the same term multiple times, but MAY do so.
    /// Users MUST therefore be prepared to deal with duplicates.
    fn subjects(&self) -> GTermSource<Self> {
        Box::new(self.triples().map_ok(Triple::to_s))
    }

    /// Build a fallible iterator of all the terms used as predicate in this Graph.
    ///
    /// NB: implementations SHOULD avoid yielding the same term multiple times, but MAY do so.
    /// Users MUST therefore be prepared to deal with duplicates.
    fn predicates(&self) -> GTermSource<Self> {
        Box::new(self.triples().map_ok(Triple::to_p))
    }

    /// Build a fallible iterator of all the terms used as object in this Graph.
    ///
    /// NB: implementations SHOULD avoid yielding the same term multiple times, but MAY do so.
    /// Users MUST therefore be prepared to deal with duplicates.
    fn objects(&self) -> GTermSource<Self> {
        Box::new(self.triples().map_ok(Triple::to_o))
    }

    /// Build a fallible iterator of all the IRIs used in this Graph
    /// (including those used inside quoted triples, if any).
    ///
    /// NB: implementations SHOULD avoid yielding the same term multiple times, but MAY do so.
    /// Users MUST therefore be prepared to deal with duplicates.
    fn iris(&self) -> GTermSource<Self> {
        Box::new(
            self.triples()
                .flat_map_ok(Triple::to_spo)
                .flat_map_ok(Term::to_atoms)
                .filter_ok(Term::is_iri),
        )
    }

    /// Build a fallible iterator of all the blank nodes used in this Graph
    /// (including those used inside quoted triples, if any).
    ///
    /// NB: implementations SHOULD avoid yielding the same term multiple times, but MAY do so.
    /// Users MUST therefore be prepared to deal with duplicates.
    fn blank_nodes(&self) -> GTermSource<Self> {
        Box::new(
            self.triples()
                .flat_map_ok(Triple::to_spo)
                .flat_map_ok(Term::to_atoms)
                .filter_ok(Term::is_blank_node),
        )
    }

    /// Build a fallible iterator of all the literals used in this Graph
    /// (including those used inside quoted triples, if any).
    ///
    /// NB: implementations SHOULD avoid yielding the same term multiple times, but MAY do so.
    /// Users MUST therefore be prepared to deal with duplicates.
    fn literals(&self) -> GTermSource<Self> {
        Box::new(
            self.triples()
                .flat_map_ok(Triple::to_spo)
                .flat_map_ok(Term::to_atoms)
                .filter_ok(Term::is_literal),
        )
    }

    /// Build a fallible iterator of all the quoted triples used in this Graph
    /// (including those used inside quoted triples, if any).
    ///
    /// NB: implementations SHOULD avoid yielding the same term multiple times, but MAY do so.
    /// Users MUST therefore be prepared to deal with duplicates.
    fn quoted_triples<'s>(&'s self) -> GTermSource<'s, Self>
    where
        GTerm<'s, Self>: Clone,
    {
        Box::new(
            self.triples()
                .flat_map_ok(Triple::to_spo)
                .flat_map_ok(Term::to_constituents)
                .filter_ok(Term::is_triple),
        )
    }

    /// Build a fallible iterator of all the variables used in this Graph
    /// (including those used inside quoted triples, if any).
    ///
    /// NB: implementations SHOULD avoid yielding the same term multiple times, but MAY do so.
    /// Users MUST therefore be prepared to deal with duplicates.
    fn variables(&self) -> GTermSource<Self> {
        Box::new(
            self.triples()
                .flat_map_ok(Triple::to_spo)
                .flat_map_ok(Term::to_atoms)
                .filter_ok(Term::is_variable),
        )
    }

    /// [`Dataset`](crate::dataset::Dataset) adapter borrowing this graph
    fn as_dataset(&self) -> GraphAsDataset<&Self> {
        GraphAsDataset::new(self)
    }

    /// [`Dataset`](crate::dataset::Dataset) adapter borrowing this graph mutably
    fn as_dataset_mut(&mut self) -> GraphAsDataset<&mut Self> {
        GraphAsDataset::new(self)
    }

    /// [`Dataset`](crate::dataset::Dataset) adapter taking ownership of this graph
    fn into_dataset(self) -> GraphAsDataset<Self>
    where
        Self: Sized,
    {
        GraphAsDataset::new(self)
    }
}

/// A [`Graph`] that can be constructed from a [`TripleSource`]
pub trait CollectibleGraph: Graph + Sized {
    /// Construct a graph from the given source
    fn from_triple_source<TS: TripleSource>(
        triples: TS,
    ) -> StreamResult<Self, TS::Error, Self::Error>;
}

/// Type alias for results produced by a mutable graph.
pub type MgResult<G, T> = std::result::Result<T, <G as MutableGraph>::MutationError>;

/// Generic trait for mutable RDF graphs.
///
/// NB: the semantics of this trait allows a graph to contain duplicate triples;
/// see also [`SetGraph`].
pub trait MutableGraph: Graph {
    /// The error type that this graph may raise during mutations.
    type MutationError: Error + 'static;

    /// Insert in this graph a triple made of the the given terms.
    ///
    /// # Return value
    /// The `bool` value returned in case of success is
    /// **not significant unless** this graph also implements [`SetGraph`].
    ///
    /// If it does,
    /// `true` is returned iff the insertion actually changed the graph.
    /// In other words,
    /// a return value of `false` means that the graph was not changed,
    /// because the triple was already present in this [`SetGraph`].
    ///
    /// See also [`insert_triple`](MutableGraph::insert_triple)
    ///
    /// # Usage
    /// ```
    /// # use sophia_api::graph::{MutableGraph, MgResult};
    /// # use sophia_api::ns::{Namespace, rdf, rdfs, xsd};
    /// # fn populate<G: MutableGraph>(graph: &mut G) -> MgResult<G, ()> {
    /// #
    /// let schema = Namespace::new("http://schema.org/").unwrap();
    /// let s_name = schema.get("name").unwrap();
    ///
    /// graph.insert(&s_name, &rdf::type_, &rdf::Property)?;
    /// graph.insert(&s_name, &rdfs::range, &xsd::string)?;
    /// graph.insert(&s_name, &rdfs::comment, "The name of the item.")?;
    /// #
    /// # Ok(())
    /// # }
    /// ```
    fn insert<TS, TP, TO>(&mut self, s: TS, p: TP, p: TO) -> MgResult<Self, bool>
    where
        TS: Term,
        TP: Term,
        TO: Term;

    /// Insert in this graph the given triple.
    ///
    /// NB: if you want to insert a triple `t` while keeping its ownership,
    /// you can still pass [`t.spo()`](Triple::spo).
    ///
    /// See also [`MutableGraph::insert`]
    fn insert_triple<T>(&mut self, triple: T) -> MgResult<Self, bool>
    where
        T: Triple,
    {
        let [s, p, o] = triple.to_spo();
        self.insert(s, p, o)
    }

    /// Remove from this graph the triple made of the the given terms.
    ///
    /// # Return value
    /// The `bool` value returned in case of success is
    /// **not significant unless** this graph also implements [`SetGraph`].
    ///
    /// If it does,
    /// `true` is returned iff the removal actually changed the graph.
    /// In other words,
    /// a return value of `false` means that the graph was not changed,
    /// because the triple was already absent from this [`SetGraph`].
    fn remove<TS, TP, TO>(&mut self, s: TS, p: TP, o: TO) -> MgResult<Self, bool>
    where
        TS: Term,
        TP: Term,
        TO: Term;

    /// Remoe from this graph the given triple.
    ///
    /// NB: if you want to remove a triple `t` while keeping its ownership,
    /// you can still pass [`t.spo()`](Triple::spo).
    ///
    /// See also [MutableGraph::remove]
    fn remove_triple<T>(&mut self, triple: T) -> MgResult<Self, bool>
    where
        T: Triple,
    {
        let [s, p, o] = triple.to_spo();
        self.remove(s, p, o)
    }

    /// Insert into this graph all triples from the given source.
    ///
    /// # Blank node scope
    /// The blank nodes contained in the triple source will be inserted as is.
    /// If they happen to have the same identifier as blank nodes already present,
    /// they will be considered equal.
    /// This might *not* be what you want,
    /// especially if the graph contains data from a file,
    /// and you are inserting data from a different file.
    /// In that case, you should first transform the triple source,
    /// in order to get fresh blank node identifiers.
    ///
    /// # Return value
    /// The `usize` value returned in case of success is
    /// **not significant unless** this graph also implements [`SetGraph`].
    ///
    /// If it does,
    /// the number of triples that were *actually* inserted
    /// (i.e. that were not already present in this [`SetGraph`])
    /// is returned.
    #[inline]
    fn insert_all<TS: TripleSource>(
        &mut self,
        src: TS,
    ) -> StreamResult<usize, TS::Error, <Self as MutableGraph>::MutationError> {
        let mut src = src;
        let mut c = 0;
        src.try_for_each_triple(|t| -> MgResult<Self, ()> {
            if self.insert_triple(t.spo())? {
                c += 1;
            }
            Ok(())
        })
        .and(Ok(c))
    }

    /// Remove from this graph all triples from the given source.
    ///
    /// # Return value
    /// The `usize` value returned in case of success is
    /// **not significant unless** this graph also implements [`SetGraph`].
    ///
    /// If it does,
    /// the number of triples that were *actually* removed
    /// (i.e. that were not already absent from this [`SetGraph`])
    /// is returned.
    #[inline]
    fn remove_all<TS: TripleSource>(
        &mut self,
        src: TS,
    ) -> StreamResult<usize, TS::Error, <Self as MutableGraph>::MutationError> {
        let mut src = src;
        let mut c = 0;
        src.try_for_each_triple(|t| -> MgResult<Self, ()> {
            if self.remove_triple(t.spo())? {
                c += 1;
            }
            Ok(())
        })
        .and(Ok(c))
    }

    /// Remove all triples matching the given matchers.
    ///
    /// # Return value
    /// The `usize` value returned in case of success is
    /// **not significant unless** this graph also implements [`SetGraph`].
    ///
    /// If it does,
    /// the number of triples that were *actually* removed
    /// (i.e. that were not already absent from this [`SetGraph`])
    /// is returned.
    ///
    /// # Note to implementors
    /// The default implementation is rather naive,
    /// and could be improved in specific implementations of the trait.
    fn remove_matching<S, P, O>(
        &mut self,
        ms: S,
        mp: P,
        mo: O,
    ) -> Result<usize, Self::MutationError>
    where
        S: TermMatcher,
        P: TermMatcher,
        O: TermMatcher,
        Self::MutationError: From<Self::Error>,
    {
        let to_remove: Result<Vec<[SimpleTerm; 3]>, _> = self
            .triples_matching(ms, mp, mo)
            .map_ok(|t| t.spo().map(Term::into_term))
            .collect();
        self.remove_all(to_remove?.into_iter().into_triple_source())
            .map_err(|err| err.unwrap_sink_error())
    }

    /// Keep only the triples matching the given matchers.
    ///
    /// # Note to implementors
    /// The default implementation is rather naive,
    /// and could be improved in specific implementations of the trait.
    fn retain_matching<S, P, O>(&mut self, ms: S, mp: P, mo: O) -> Result<(), Self::MutationError>
    where
        S: TermMatcher,
        P: TermMatcher,
        O: TermMatcher,
        Self::MutationError: From<Self::Error>,
    {
        let to_remove: Result<Vec<[SimpleTerm; 3]>, _> = self
            .triples()
            .filter_ok(|t| !t.matched_by(ms.matcher_ref(), mp.matcher_ref(), mo.matcher_ref()))
            .map_ok(|t| t.spo().map(Term::into_term))
            .collect();
        self.remove_all(to_remove?.into_iter().into_triple_source())
            .map_err(|err| err.unwrap_sink_error())?;
        Ok(())
    }
}

/// Marker trait constraining the semantics of
/// [`Graph`] and [`MutableGraph`].
///
/// It guarantees that
/// (1) triples will never be returned / stored multiple times.
///
/// If the type also implements [`MutableGraph`],
/// it must also ensure that
/// (2) the `bool` or `usize` values returned by [`MutableGraph`]
/// methods accurately describe how many triples were actually added/removed.
///
/// # Note to implementors
/// A type implementing both [`Graph`] and [`MutableGraph`],
/// enforcing (1) but failing to enforce (2)
/// *must not* implement this trait.
pub trait SetGraph: Graph {}

#[cfg(test)]
mod check_implementability {
    /// This is a naive implementation of an RDF-star graph,
    /// where the graph maintains
    /// - a list of terms (either atoms or index of triple)
    /// - a list of triples (SPO indexes, plus an 'asserted' flag)
    /// This avoids the need to store arbitrarily nested triples.
    use super::*;
    use crate::term::SimpleTerm;

    #[derive(Clone, Debug, Eq, PartialEq)]
    #[allow(dead_code)] // testing implementability
    enum MyInternalTerm {
        Atom(SimpleTerm<'static>),
        QuotedTriple(usize),
    }
    use MyInternalTerm::*;

    #[derive(Clone, Debug, Eq, PartialEq)]
    struct MyInternalTriple {
        asserted: bool,
        spo: [usize; 3],
    }

    #[derive(Clone, Debug)]
    struct MyGraph {
        terms: Vec<MyInternalTerm>,
        triples: Vec<MyInternalTriple>,
    }

    impl MyGraph {
        fn make_term(&self, i: usize) -> SimpleTerm<'_> {
            match &self.terms[i] {
                Atom(t) => t.as_simple(),
                QuotedTriple(j) => {
                    SimpleTerm::Triple(Box::new(self.make_triple(self.triples[*j].spo)))
                }
            }
        }

        fn make_triple(&self, spo: [usize; 3]) -> [SimpleTerm<'_>; 3] {
            spo.map(|j| self.make_term(j))
        }
    }

    impl Graph for MyGraph {
        type Triple<'x> = [SimpleTerm<'x>; 3] where Self: 'x;
        type Error = std::convert::Infallible;

        fn triples(&self) -> GTripleSource<Self> {
            Box::new(
                self.triples
                    .iter()
                    .filter(|t| t.asserted)
                    .map(|t| Ok(self.make_triple(t.spo))),
            )
        }
    }
}

#[cfg(test)]
mod check_implementability_lazy_term {
    /// This implementation is internally similar to the one above,
    /// but using dedicated lazy implementations of Term
    /// (lazy because it avoids allocating nested triples until forced)
    use super::*;
    use crate::term::{SimpleTerm, TermKind};

    #[derive(Clone, Debug, Eq, PartialEq)]
    #[allow(dead_code)] // testing implementability
    enum MyInternalTerm {
        Atom(SimpleTerm<'static>),
        QuotedTriple(usize),
    }
    use MyInternalTerm::*;

    #[derive(Clone, Debug, Eq, PartialEq)]
    struct MyInternalTriple {
        asserted: bool,
        spo: [usize; 3],
    }

    #[derive(Clone, Debug)]
    struct MyGraph {
        terms: Vec<MyInternalTerm>,
        triples: Vec<MyInternalTriple>,
    }

    #[derive(Clone, Copy, Debug)]
    struct MyTerm<'a> {
        graph: &'a MyGraph,
        index: usize,
    }

    impl<'a> Term for MyTerm<'a> {
        type BorrowTerm<'x> = MyTerm<'x> where Self: 'x;

        fn kind(&self) -> crate::term::TermKind {
            if let Atom(t) = &self.graph.terms[self.index] {
                t.kind()
            } else {
                TermKind::Triple
            }
        }

        fn iri(&self) -> Option<crate::term::IriRef<mownstr::MownStr>> {
            if let Atom(t) = &self.graph.terms[self.index] {
                t.iri()
            } else {
                None
            }
        }

        fn bnode_id(&self) -> Option<crate::term::BnodeId<mownstr::MownStr>> {
            if let Atom(t) = &self.graph.terms[self.index] {
                t.bnode_id()
            } else {
                None
            }
        }

        fn lexical_form(&self) -> Option<mownstr::MownStr> {
            if let Atom(t) = &self.graph.terms[self.index] {
                t.lexical_form()
            } else {
                None
            }
        }

        fn datatype(&self) -> Option<crate::term::IriRef<mownstr::MownStr>> {
            if let Atom(t) = &self.graph.terms[self.index] {
                t.datatype()
            } else {
                None
            }
        }

        fn language_tag(&self) -> Option<crate::term::LanguageTag<mownstr::MownStr>> {
            if let Atom(t) = &self.graph.terms[self.index] {
                t.language_tag()
            } else {
                None
            }
        }

        fn variable(&self) -> Option<crate::term::VarName<mownstr::MownStr>> {
            if let Atom(t) = &self.graph.terms[self.index] {
                t.variable()
            } else {
                None
            }
        }

        fn triple(&self) -> Option<[Self::BorrowTerm<'_>; 3]> {
            self.to_triple()
        }

        fn to_triple(self) -> Option<[Self; 3]> {
            if let QuotedTriple(i) = &self.graph.terms[self.index] {
                Some(self.graph.triples[*i].spo.map(|t| MyTerm {
                    graph: self.graph,
                    index: t,
                }))
            } else {
                None
            }
        }

        fn borrow_term(&self) -> Self::BorrowTerm<'_> {
            *self
        }
    }

    impl Graph for MyGraph {
        type Triple<'x> = [MyTerm<'x>; 3] where Self: 'x;

        type Error = std::convert::Infallible;

        fn triples(&self) -> GTripleSource<Self> {
            Box::new(self.triples.iter().filter(|t| t.asserted).map(|t| {
                Ok(t.spo.map(|i| MyTerm {
                    graph: self,
                    index: i,
                }))
            }))
        }
    }
}