1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//! An RDF triple expresses a single fact.
//! Its formed of three terms called *subject*, *predicate* and *object*.
//!
//! You can think of a triple as a sentence of the form
//! "subject verb complement"
//! (although the *predicate* is often better expressed as a relationship than a verb).
//! Examples :
//!
//! * John is a person.
//! * John was born in Paris.
//! * John knows Jane.
//! * John's family name is "Doe".
//!

use crate::quad::Quad;
use crate::term::TTerm;

pub mod stream;
pub mod streaming_mode;

/// This trait represents an abstract RDF triple,
/// and provide convenient methods for working with triples.
pub trait Triple {
    type Term: TTerm + ?Sized;
    /// The subject of this triple.
    fn s(&self) -> &Self::Term;
    /// The predicate of this triple.
    fn p(&self) -> &Self::Term;
    /// The object of this triple.
    fn o(&self) -> &Self::Term;

    /// [`Quad`] adapter owning this triple,
    /// pretending to belong to the default graph.
    fn wrap_as_quad(self) -> TripleAsQuad<Self>
    where
        Self: Sized,
    {
        TripleAsQuad(self)
    }

    #[deprecated(since = "0.6.3", note = "has been renamed to wrap_as_quad")]
    #[allow(clippy::wrong_self_convention)]
    fn as_quad(self) -> TripleAsQuad<Self>
    where
        Self: Sized,
        Self::Term: Sized,
    {
        self.wrap_as_quad()
    }

    /// [`Quad`] adapter owning this triple,
    /// pretending to belong to a named graph with the given name.
    fn wrap_as_quad_from(self, name: Self::Term) -> TripleAsQuadFrom<Self>
    where
        Self: Sized,
        Self::Term: Sized,
    {
        TripleAsQuadFrom(self, name)
    }

    #[deprecated(since = "0.6.3", note = "has been renamed to wrap_as_quad_from")]
    #[allow(clippy::wrong_self_convention)]
    fn as_quad_from(self, name: Self::Term) -> TripleAsQuadFrom<Self>
    where
        Self: Sized,
        Self::Term: Sized,
    {
        self.wrap_as_quad_from(name)
    }

    /// Iterator over the components of this triple
    fn components(&self) -> TripleIter<Self> {
        TripleIter(self, 0)
    }
}

/// Iterator over the components of a triple.
pub struct TripleIter<'a, T: ?Sized>(&'a T, u8);

impl<'a, T> Iterator for TripleIter<'a, T>
where
    T: Triple + ?Sized,
{
    type Item = &'a T::Term;
    fn next(&mut self) -> Option<Self::Item> {
        self.1 += 1;
        match self.1 {
            1 => Some(self.0.s()),
            2 => Some(self.0.p()),
            3 => Some(self.0.o()),
            _ => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (3, Some(3))
    }
}

impl<T> Triple for [T; 3]
where
    T: TTerm + Sized,
{
    type Term = T;
    #[inline]
    fn s(&self) -> &Self::Term {
        &self[0]
    }
    #[inline]
    fn p(&self) -> &Self::Term {
        &self[1]
    }
    #[inline]
    fn o(&self) -> &Self::Term {
        &self[2]
    }
}

impl<'a, T> Triple for (&'a T, &'a T, &'a T)
where
    T: TTerm + ?Sized,
{
    type Term = T;
    #[inline]
    fn s(&self) -> &Self::Term {
        self.0
    }
    #[inline]
    fn p(&self) -> &Self::Term {
        self.1
    }
    #[inline]
    fn o(&self) -> &Self::Term {
        self.2
    }
}

impl<'a, T: Triple> Triple for &'a T {
    type Term = T::Term;
    #[inline]
    fn s(&self) -> &Self::Term {
        (*self).s()
    }
    #[inline]
    fn p(&self) -> &Self::Term {
        (*self).p()
    }
    #[inline]
    fn o(&self) -> &Self::Term {
        (*self).o()
    }
}

/// The adapter returned by [`Triple::as_quad`].
pub struct TripleAsQuad<T>(T);

impl<T> TripleAsQuad<T> {
    /// Unwrap this adapter to get the original triple back.
    pub fn unwrap(self) -> T {
        self.0
    }
}

impl<T: Triple> Quad for TripleAsQuad<T> {
    type Term = T::Term;
    #[inline]
    fn s(&self) -> &Self::Term {
        self.0.s()
    }
    #[inline]
    fn p(&self) -> &Self::Term {
        self.0.p()
    }
    #[inline]
    fn o(&self) -> &Self::Term {
        self.0.o()
    }
    #[inline]
    fn g(&self) -> Option<&Self::Term> {
        None
    }
}

/// The adapter returned by [`Triple::as_quad_from`].
pub struct TripleAsQuadFrom<T: Triple>(T, T::Term);

impl<T> TripleAsQuadFrom<T>
where
    T: Triple,
    T::Term: Sized,
{
    /// Unwrap this adapter to get the original triple back.
    pub fn unwrap(self) -> T {
        self.0
    }
}

impl<T> Quad for TripleAsQuadFrom<T>
where
    T: Triple,
{
    type Term = T::Term;
    #[inline]
    fn s(&self) -> &Self::Term {
        self.0.s()
    }
    #[inline]
    fn p(&self) -> &Self::Term {
        self.0.p()
    }
    #[inline]
    fn o(&self) -> &Self::Term {
        self.0.o()
    }
    #[inline]
    fn g(&self) -> Option<&Self::Term> {
        Some(&self.1)
    }
}

#[cfg(test)]
mod test {
    // Nothing really worth testing here
}