pub struct Compiler(/* private fields */);Expand description
The compiler.
This is the main entry point and driver for the compiler.
It must be entered to perform most operations, as it makes use of thread-local
storage, which is only available inside of a closure.
enter_mut is only necessary when parsing sources and lowering the ASTs. All
accesses after can make use of gcx, passed by immutable reference.
Once a stage-advancing operation is performed, such as parse, lower, etc., the compiler may
not perform the same or a previous operation again, with the exception of parse.
§Examples
use solar::{
interface::{Session, diagnostics::EmittedDiagnostics},
sema::Compiler,
};
use std::{ops::ControlFlow, path::Path};
#[test]
fn main() -> Result<(), EmittedDiagnostics> {
let paths = [Path::new("src/AnotherCounter.sol")];
// Create a new session with a buffer emitter.
// This is required to capture the emitted diagnostics and to return them at the end.
let sess = Session::builder().with_buffer_emitter(solar::interface::ColorChoice::Auto).build();
// Create a new compiler.
let mut compiler = Compiler::new(sess);
// Enter the context and parse the file.
// Counter will be parsed, even if not explicitly provided, since it is a dependency.
let _ = compiler.enter_mut(|compiler| -> solar::interface::Result<_> {
// Parse the files.
let mut parsing_context = compiler.parse();
parsing_context.load_files(paths)?;
parsing_context.parse();
Ok(())
});
// Do some other stuff, store the compiler in a struct...
// Enter the context again and lower the ASTs to inspect the HIR.
let contracts = compiler.enter_mut(|compiler| -> solar::interface::Result<_> {
// Perform AST lowering to populate the HIR.
let ControlFlow::Continue(()) = compiler.lower_asts()? else {
// Can't continue because HIR was not populated,
// possibly because it was requested in `Session` with `stop_after`.
return Ok(vec![]);
};
// Inspect the HIR.
let gcx = compiler.gcx();
let contracts = gcx.hir.contracts().map(|c| c.name.to_string()).collect::<Vec<_>>();
Ok(contracts)
});
if let Ok(mut contracts) = contracts {
// No order is guaranteed.
contracts.sort();
assert_eq!(contracts, ["AnotherCounter".to_string(), "Counter".to_string()]);
}
// `compiler` can be entered again to perform analysis, type checking, etc, without needing
// mutable access, since `gcx` is the main context that is passed by immutable reference.
// Return the emitted diagnostics as a `Result<(), _>`.
// If any errors were emitted, this returns `Err(_)`, otherwise `Ok(())`.
// Note that this discards warnings and other non-error diagnostics.
compiler.sess().emitted_errors().unwrap()
}Implementations§
Source§impl Compiler
impl Compiler
Sourcepub fn sess_mut(&mut self) -> &mut Session
pub fn sess_mut(&mut self) -> &mut Session
Returns a mutable reference to the compiler session.
Sourcepub fn dcx_mut(&mut self) -> &mut DiagCtxt
pub fn dcx_mut(&mut self) -> &mut DiagCtxt
Returns a mutable reference to the diagnostics context.
Sourcepub fn enter<T>(&self, f: impl FnOnce(&CompilerRef<'_>) -> T + Send) -> Twhere
T: Send,
pub fn enter<T>(&self, f: impl FnOnce(&CompilerRef<'_>) -> T + Send) -> Twhere
T: Send,
Enters the compiler context.
See Session::enter for more details.
Sourcepub fn enter_mut<T>(
&mut self,
f: impl FnOnce(&mut CompilerRef<'_>) -> T + Send,
) -> Twhere
T: Send,
pub fn enter_mut<T>(
&mut self,
f: impl FnOnce(&mut CompilerRef<'_>) -> T + Send,
) -> Twhere
T: Send,
Enters the compiler context with mutable access.
This is currently only necessary when parsing sources and lowering the ASTs.
All accesses after can make use of gcx, passed by immutable reference.
See Session::enter for more details.
Sourcepub fn enter_sequential<T>(&self, f: impl FnOnce(&CompilerRef<'_>) -> T) -> T
pub fn enter_sequential<T>(&self, f: impl FnOnce(&CompilerRef<'_>) -> T) -> T
Enters the compiler context.
Note that this does not set up the rayon thread pool. This is only useful when parsing
sequentially, like manually using Parser. Otherwise, it might cause panics later on if a
thread pool is expected to be set up correctly.
See enter for more details.
Sourcepub fn enter_sequential_mut<T>(
&mut self,
f: impl FnOnce(&mut CompilerRef<'_>) -> T,
) -> T
pub fn enter_sequential_mut<T>( &mut self, f: impl FnOnce(&mut CompilerRef<'_>) -> T, ) -> T
Enters the compiler context with mutable access.
Note that this does not set up the rayon thread pool. This is only useful when parsing
sequentially, like manually using Parser. Otherwise, it might cause panics later on if a
thread pool is expected to be set up correctly.
See enter_mut for more details.
Trait Implementations§
Auto Trait Implementations§
impl Freeze for Compiler
impl !RefUnwindSafe for Compiler
impl Send for Compiler
impl Sync for Compiler
impl Unpin for Compiler
impl !UnwindSafe for Compiler
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T, R> CollectAndApply<T, R> for T
impl<T, R> CollectAndApply<T, R> for T
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more