1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// Derived from uBPF <https://github.com/iovisor/ubpf>
// Copyright 2015 Big Switch Networks, Inc
//      (uBPF: safety checks, originally in C)
// Copyright 2016 6WIND S.A. <quentin.monnet@6wind.com>
//      (Translation to Rust)
//
// Licensed under the Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0> or
// the MIT license <http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.


//! This “verifier” performs simple checks when the eBPF program is loaded into the VM (before it is
//! interpreted or JIT-compiled). It has nothing to do with the much more elaborated verifier inside
//! Linux kernel. There is no verification regarding the program flow control (should be a Direct
//! Acyclic Graph) or the consistency for registers usage (the verifier of the kernel assigns types
//! to the registers and is much stricter).
//!
//! On the other hand, rbpf is not expected to run in kernel space.
//!
//! Improving the verifier would be nice, but this is not trivial (and Linux kernel is under GPL
//! license, so we cannot copy it).
//!
//! Contrary to the verifier of the Linux kernel, this one does not modify the bytecode at all.

#![allow(clippy::deprecated_cfg_attr)]
#![cfg_attr(rustfmt, rustfmt_skip)]

use ebpf::{self, UserDefinedError};
use user_error::UserError;
use thiserror::Error;

/// Error definitions
#[derive(Debug, Error)]
pub enum VerifierError {
    /// ProgramLengthNotMultiple
    #[error("program length must be a multiple of {} octets", ebpf::INSN_SIZE)]
    ProgramLengthNotMultiple,
    /// ProgramTooLarge
    #[error("program too big, max {}, is {}", ebpf::PROG_MAX_INSNS, .0)]
    ProgramTooLarge(usize),
    /// NoProgram
    #[error("no program set, call prog_set() to load one")]
    NoProgram,
    ///InvalidLastInstruction
    #[error("program does not end with “EXIT” instruction")]
    InvalidLastInstruction,
    /// DivisionByZero
    #[error("division by 0 (insn #{0})")]
    DivisionByZero(usize),
    /// UnsupportedLEBEArgument
    #[error("unsupported argument for LE/BE (insn #{0})")]
    UnsupportedLEBEArgument(usize),
    /// LDDWCannotBeLast
    #[error("LD_DW instruction cannot be last in program")]
    LDDWCannotBeLast,
    /// IncompleteLDDW
    #[error("incomplete LD_DW instruction (insn #{0})")]
    IncompleteLDDW(usize),
    /// InfiniteLoop
    #[error("infinite loop (insn #{0})")]
    InfiniteLoop(usize),
    /// JumpOutOfCode
    #[error("jump out of code to #{0} (insn #{1})")]
    JumpOutOfCode(usize, usize),
    /// JumpToMiddleOfLDDW
    #[error("jump to middle of LD_DW at #{0} (insn #{1})")]
    JumpToMiddleOfLDDW(usize, usize),
    /// InvalidSourceRegister
    #[error("invalid source register (insn #{0})")]
    InvalidSourceRegister(usize),
    /// CannotWriteR10
    #[error("cannot write into register r10 (insn #{0})")]
    CannotWriteR10(usize),
    /// InvalidDestinationRegister
    #[error("invalid destination register (insn #{0})")]
    InvalidDestinationRegister(usize),
    /// UnknownOpCode
    #[error("unknown eBPF opcode {0:#2x} (insn #{1:?})")]
    UnknownOpCode(u8, usize),
    /// Shift with overflow
    #[error("Shift with overflow at instruction {0}")]
    ShiftWithOverflow(usize),
    /// Invalid register specified
    #[error("Invalid register specified at instruction {0}")]
    InvalidRegister(usize),
}
impl UserDefinedError for VerifierError {}
impl From<VerifierError> for UserError {
    fn from(error: VerifierError) -> Self {
        UserError::VerifierError(error)
    }
}

fn check_prog_len(prog: &[u8]) -> Result<(), VerifierError> {
    if prog.len() % ebpf::INSN_SIZE != 0 {
       return Err(VerifierError::ProgramLengthNotMultiple);
    }
    if prog.len() > ebpf::PROG_MAX_SIZE {
        return Err(VerifierError::ProgramTooLarge(prog.len() / ebpf::INSN_SIZE));
    }

    if prog.is_empty() {
        return Err(VerifierError::NoProgram);
    }
    let last_insn = ebpf::get_insn(prog, (prog.len() / ebpf::INSN_SIZE) - 1);
    if last_insn.opc != ebpf::EXIT {
        return Err(VerifierError::InvalidLastInstruction);
    }

    Ok(())
}

fn check_imm_nonzero(insn: &ebpf::Insn, insn_ptr: usize) -> Result<(), VerifierError> {
    if insn.imm == 0 {
        return Err(VerifierError::DivisionByZero(insn_ptr));
    }
    Ok(())
}

fn check_imm_endian(insn: &ebpf::Insn, insn_ptr: usize) -> Result<(), VerifierError> {
    match insn.imm {
        16 | 32 | 64 => Ok(()),
        _ => Err(VerifierError::UnsupportedLEBEArgument(insn_ptr)),
    }
}

fn check_load_dw(prog: &[u8], insn_ptr: usize) -> Result<(), VerifierError> {
    // We know we can reach next insn since we enforce an EXIT insn at the end of program, while
    // this function should be called only for LD_DW insn, that cannot be last in program.
    let next_insn = ebpf::get_insn(prog, insn_ptr + 1);
    if next_insn.opc != 0 {
        return Err(VerifierError::IncompleteLDDW(insn_ptr));
    }
    Ok(())
}

fn check_jmp_offset(prog: &[u8], insn_ptr: usize) -> Result<(), VerifierError> {
    let insn = ebpf::get_insn(prog, insn_ptr);
    if insn.off == -1 {
        return Err(VerifierError::InfiniteLoop(insn_ptr));
    }

    let dst_insn_ptr = insn_ptr as isize + 1 + insn.off as isize;
    if dst_insn_ptr < 0 || dst_insn_ptr as usize >= (prog.len() / ebpf::INSN_SIZE) {
        return Err(VerifierError::JumpOutOfCode(dst_insn_ptr as usize, insn_ptr));
    }
    let dst_insn = ebpf::get_insn(prog, dst_insn_ptr as usize);
    if dst_insn.opc == 0 {
        return Err(VerifierError::JumpToMiddleOfLDDW(dst_insn_ptr as usize, insn_ptr));
    }
    Ok(())
}

fn check_registers(insn: &ebpf::Insn, store: bool, insn_ptr: usize) -> Result<(), VerifierError> {
    if insn.src > 10 {
        return Err(VerifierError::InvalidSourceRegister(insn_ptr));
    }
    match (insn.dst, store) {
        (0..=9, _) | (10, true) => Ok(()),
        (10, false) => Err(VerifierError::CannotWriteR10(insn_ptr)),
        (_, _) => Err(VerifierError::InvalidDestinationRegister(insn_ptr)),
    }
}

/// Check that the imm is a valid shift operand
fn check_imm_shift(insn: &ebpf::Insn, insn_ptr: usize) -> Result<(), VerifierError> {
    if insn.imm < 0 || insn.imm as u64 >= 64 {
        return Err(VerifierError::ShiftWithOverflow(insn_ptr));
    }
    Ok(())
}

/// Check that the imm is a valid register number
fn check_imm_register(insn: &ebpf::Insn, insn_ptr: usize) -> Result<(), VerifierError> {
    if insn.imm < 0 || insn.imm > 10 {
        return Err(VerifierError::InvalidRegister(insn_ptr));
    }
    Ok(())
}

/// Default eBPF verifier
pub fn check(prog: &[u8]) -> Result<(), VerifierError> {
    check_prog_len(prog)?;

    let mut insn_ptr: usize = 0;
    while insn_ptr * ebpf::INSN_SIZE < prog.len() {
        let insn = ebpf::get_insn(prog, insn_ptr);
        let mut store = false;

        match insn.opc {

            // BPF_LD class
            ebpf::LD_ABS_B   => {},
            ebpf::LD_ABS_H   => {},
            ebpf::LD_ABS_W   => {},
            ebpf::LD_ABS_DW  => {},
            ebpf::LD_IND_B   => {},
            ebpf::LD_IND_H   => {},
            ebpf::LD_IND_W   => {},
            ebpf::LD_IND_DW  => {},

            ebpf::LD_DW_IMM  => {
                store = true;
                check_load_dw(prog, insn_ptr)?;
                insn_ptr += 1;
            },

            // BPF_LDX class
            ebpf::LD_B_REG   => {},
            ebpf::LD_H_REG   => {},
            ebpf::LD_W_REG   => {},
            ebpf::LD_DW_REG  => {},

            // BPF_ST class
            ebpf::ST_B_IMM   => store = true,
            ebpf::ST_H_IMM   => store = true,
            ebpf::ST_W_IMM   => store = true,
            ebpf::ST_DW_IMM  => store = true,

            // BPF_STX class
            ebpf::ST_B_REG   => store = true,
            ebpf::ST_H_REG   => store = true,
            ebpf::ST_W_REG   => store = true,
            ebpf::ST_DW_REG  => store = true,

            // BPF_ALU class
            ebpf::ADD32_IMM  => {},
            ebpf::ADD32_REG  => {},
            ebpf::SUB32_IMM  => {},
            ebpf::SUB32_REG  => {},
            ebpf::MUL32_IMM  => {},
            ebpf::MUL32_REG  => {},
            ebpf::DIV32_IMM  => { check_imm_nonzero(&insn, insn_ptr)?; },
            ebpf::DIV32_REG  => {},
            ebpf::OR32_IMM   => {},
            ebpf::OR32_REG   => {},
            ebpf::AND32_IMM  => {},
            ebpf::AND32_REG  => {},
            ebpf::LSH32_IMM  => { check_imm_shift(&insn, insn_ptr)?; },
            ebpf::LSH32_REG  => {},
            ebpf::RSH32_IMM  => { check_imm_shift(&insn, insn_ptr)?; },
            ebpf::RSH32_REG  => {},
            ebpf::NEG32      => {},
            ebpf::MOD32_IMM  => { check_imm_nonzero(&insn, insn_ptr)?; },
            ebpf::MOD32_REG  => {},
            ebpf::XOR32_IMM  => {},
            ebpf::XOR32_REG  => {},
            ebpf::MOV32_IMM  => {},
            ebpf::MOV32_REG  => {},
            ebpf::ARSH32_IMM => { check_imm_shift(&insn, insn_ptr)?; },
            ebpf::ARSH32_REG => {},
            ebpf::LE         => { check_imm_endian(&insn, insn_ptr)?; },
            ebpf::BE         => { check_imm_endian(&insn, insn_ptr)?; },

            // BPF_ALU64 class
            ebpf::ADD64_IMM  => {},
            ebpf::ADD64_REG  => {},
            ebpf::SUB64_IMM  => {},
            ebpf::SUB64_REG  => {},
            ebpf::MUL64_IMM  => { check_imm_nonzero(&insn, insn_ptr)?; },
            ebpf::MUL64_REG  => {},
            ebpf::DIV64_IMM  => { check_imm_nonzero(&insn, insn_ptr)?; },
            ebpf::DIV64_REG  => {},
            ebpf::OR64_IMM   => {},
            ebpf::OR64_REG   => {},
            ebpf::AND64_IMM  => {},
            ebpf::AND64_REG  => {},
            ebpf::LSH64_IMM  => { check_imm_shift(&insn, insn_ptr)?; },
            ebpf::LSH64_REG  => {},
            ebpf::RSH64_IMM  => { check_imm_shift(&insn, insn_ptr)?; },
            ebpf::RSH64_REG  => {},
            ebpf::NEG64      => {},
            ebpf::MOD64_IMM  => { check_imm_nonzero(&insn, insn_ptr)?; },
            ebpf::MOD64_REG  => {},
            ebpf::XOR64_IMM  => {},
            ebpf::XOR64_REG  => {},
            ebpf::MOV64_IMM  => {},
            ebpf::MOV64_REG  => {},
            ebpf::ARSH64_IMM => { check_imm_shift(&insn, insn_ptr)?; },
            ebpf::ARSH64_REG => {},

            // BPF_JMP class
            ebpf::JA         => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JEQ_IMM    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JEQ_REG    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JGT_IMM    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JGT_REG    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JGE_IMM    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JGE_REG    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JLT_IMM    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JLT_REG    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JLE_IMM    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JLE_REG    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSET_IMM   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSET_REG   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JNE_IMM    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JNE_REG    => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSGT_IMM   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSGT_REG   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSGE_IMM   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSGE_REG   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSLT_IMM   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSLT_REG   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSLE_IMM   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::JSLE_REG   => { check_jmp_offset(prog, insn_ptr)?; },
            ebpf::CALL_IMM   => {},
            ebpf::CALL_REG   => { check_imm_register(&insn, insn_ptr)?; },
            ebpf::EXIT       => {},

            _                => {
                return Err(VerifierError::UnknownOpCode(insn.opc, insn_ptr));
            }
        }

        check_registers(&insn, store, insn_ptr)?;

        insn_ptr += 1;
    }

    // insn_ptr should now be equal to number of instructions.
    if insn_ptr != prog.len() / ebpf::INSN_SIZE {
        return Err(VerifierError::JumpOutOfCode(insn_ptr, insn_ptr));
    }

    Ok(())
}