1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
// Copyright (c) The Libra Core Contributors
// SPDX-License-Identifier: Apache-2.0

//! Binary format for transactions and modules.
//!
//! This module provides a simple Rust abstraction over the binary format. That is the format of
//! modules stored on chain or the format of the code section of a transaction.
//!
//! `file_format_common.rs` provides the constant values for entities in the binary format.
//! (*The binary format is evolving so please come back here in time to check evolutions.*)
//!
//! Overall the binary format is structured in a number of sections:
//! - **Header**: this must start at offset 0 in the binary. It contains a blob that starts every
//! Libra binary, followed by the version of the VM used to compile the code, and last is the
//! number of tables present in this binary.
//! - **Table Specification**: it's a number of tuple of the form
//! `(table type, starting_offset, byte_count)`. The number of entries is specified in the
//! header (last entry in header). There can only be a single entry per table type. The
//! `starting offset` is from the beginning of the binary. Tables must cover the entire size of
//! the binary blob and cannot overlap.
//! - **Table Content**: the serialized form of the specific entries in the table. Those roughly
//! map to the structs defined in this module. Entries in each table must be unique.
//!
//! We have two formats: one for modules here represented by `CompiledModule`, another
//! for transaction scripts which is `CompiledScript`. Building those tables and passing them
//! to the serializer (`serializer.rs`) generates a binary of the form described. Vectors in
//! those structs translate to tables and table specifications.

use crate::{
    access::ModuleAccess, check_bounds::BoundsChecker, internals::ModuleIndex, vm_string::VMString,
    IndexKind, SignatureTokenKind,
};
use lazy_static::lazy_static;
#[cfg(any(test, feature = "testing"))]
use proptest::{collection::vec, prelude::*, strategy::BoxedStrategy};
#[cfg(any(test, feature = "testing"))]
use proptest_derive::Arbitrary;
use solana_libra_types::{
    account_address::AccountAddress,
    byte_array::ByteArray,
    identifier::{IdentStr, Identifier},
    language_storage::ModuleId,
    vm_error::{StatusCode, VMStatus},
};

/// Generic index into one of the tables in the binary format.
pub type TableIndex = u16;

macro_rules! define_index {
    {
        name: $name: ident,
        kind: $kind: ident,
        doc: $comment: literal,
    } => {
        #[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
        #[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
        #[cfg_attr(any(test, feature = "testing"), proptest(no_params))]
        #[doc=$comment]
        pub struct $name(pub TableIndex);

        /// Returns an instance of the given `Index`.
        impl $name {
            pub fn new(idx: TableIndex) -> Self {
                Self(idx)
            }
        }

        impl ::std::fmt::Display for $name {
            fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                write!(f, "{}", self.0)
            }
        }

        impl ::std::fmt::Debug for $name {
            fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                write!(f, "{}({})", stringify!($name), self.0)
            }
        }

        impl ModuleIndex for $name {
            const KIND: IndexKind = IndexKind::$kind;

            #[inline]
            fn into_index(self) -> usize {
                self.0 as usize
            }
        }
    };
}

define_index! {
    name: ModuleHandleIndex,
    kind: ModuleHandle,
    doc: "Index into the `ModuleHandle` table.",
}
define_index! {
    name: StructHandleIndex,
    kind: StructHandle,
    doc: "Index into the `StructHandle` table.",
}
define_index! {
    name: FunctionHandleIndex,
    kind: FunctionHandle,
    doc: "Index into the `FunctionHandle` table.",
}
define_index! {
    name: IdentifierIndex,
    kind: Identifier,
    doc: "Index into the `Identifier` table.",
}
define_index! {
    name: UserStringIndex,
    kind: UserString,
    doc: "Index into the `UserString` (VM string) table.",
}
define_index! {
    name: ByteArrayPoolIndex,
    kind: ByteArrayPool,
    doc: "Index into the `ByteArrayPool` table.",
}
define_index! {
    name: AddressPoolIndex,
    kind: AddressPool,
    doc: "Index into the `AddressPool` table.",
}
define_index! {
    name: TypeSignatureIndex,
    kind: TypeSignature,
    doc: "Index into the `TypeSignature` table.",
}
define_index! {
    name: FunctionSignatureIndex,
    kind: FunctionSignature,
    doc: "Index into the `FunctionSignature` table.",
}
define_index! {
    name: LocalsSignatureIndex,
    kind: LocalsSignature,
    doc: "Index into the `LocalsSignature` table.",
}
define_index! {
    name: StructDefinitionIndex,
    kind: StructDefinition,
    doc: "Index into the `StructDefinition` table.",
}
define_index! {
    name: FieldDefinitionIndex,
    kind: FieldDefinition,
    doc: "Index into the `FieldDefinition` table.",
}
define_index! {
    name: FunctionDefinitionIndex,
    kind: FunctionDefinition,
    doc: "Index into the `FunctionDefinition` table.",
}

/// Index of a local variable in a function.
///
/// Bytecodes that operate on locals carry indexes to the locals of a function.
pub type LocalIndex = u8;
/// Max number of fields in a `StructDefinition`.
pub type MemberCount = u16;
/// Index into the code stream for a jump. The offset is relative to the beginning of
/// the instruction stream.
pub type CodeOffset = u16;

/// The pool of identifiers.
pub type IdentifierPool = Vec<Identifier>;
/// The pool of string literals.
pub type UserStringPool = Vec<VMString>;
/// The pool of `ByteArray` literals.
pub type ByteArrayPool = Vec<ByteArray>;
/// The pool of `AccountAddress` literals.
///
/// Code references have a literal addresses in `ModuleHandle`s. Literal references to data in
/// the blockchain are also published here.
pub type AddressPool = Vec<AccountAddress>;
/// The pool of `TypeSignature` instances. Those are system and user types used and
/// their composition (e.g. &U64).
pub type TypeSignaturePool = Vec<TypeSignature>;
/// The pool of `FunctionSignature` instances.
pub type FunctionSignaturePool = Vec<FunctionSignature>;
/// The pool of `LocalsSignature` instances. Every function definition must define the set of
/// locals used and their types.
pub type LocalsSignaturePool = Vec<LocalsSignature>;

// TODO: "<SELF>" wouldn't pass a checker for identifiers unless special cased -- what do we want to
// do?
lazy_static! {
    static ref SELF_MODULE_NAME: Identifier = Identifier::new("<SELF>").unwrap();
}

pub fn self_module_name() -> &'static IdentStr {
    &*SELF_MODULE_NAME
}

/// Index 0 into the LocalsSignaturePool, which is guaranteed to be an empty list.
/// Used to represent function/struct instantiation with no type actuals -- effectively
/// non-generic functions and structs.
pub const NO_TYPE_ACTUALS: LocalsSignatureIndex = LocalsSignatureIndex(0);

// HANDLES:
// Handles are structs that accompany opcodes that need references: a type reference,
// or a function reference (a field reference being available only within the module that
// defrines the field can be a definition).
// Handles refer to both internal and external "entities" and are embedded as indexes
// in the instruction stream.
// Handles define resolution. Resolution is assumed to be by (name, signature)

/// A `ModuleHandle` is a reference to a MOVE module. It is composed by an `address` and a `name`.
///
/// A `ModuleHandle` uniquely identifies a code resource in the blockchain.
/// The `address` is a reference to the account that holds the code and the `name` is used as a
/// key in order to load the module.
///
/// Modules live in the *code* namespace of an LibraAccount.
///
/// Modules introduce a scope made of all types defined in the module and all functions.
/// Type definitions (fields) are private to the module. Outside the module a
/// Type is an opaque handle.
#[derive(Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(no_params))]
pub struct ModuleHandle {
    /// Index into the `AddressPool`. Identifies the account that holds the module.
    pub address: AddressPoolIndex,
    /// The name of the module published in the code section for the account in `address`.
    pub name: IdentifierIndex,
}

/// A `StructHandle` is a reference to a user defined type. It is composed by a `ModuleHandle`
/// and the name of the type within that module.
///
/// A type in a module is uniquely identified by its name and as such the name is enough
/// to perform resolution.
///
/// The `StructHandle` is polymorphic: it can have type parameters in its fields and carries the
/// kind constraints for these type parameters (empty list for non-generic structs). It also
/// carries the kind (resource/copyable) of the struct itself so that the verifier can check
/// resource semantic without having to load the referenced type.
///
/// At link time kind checking is performed and an error is reported if there is a
/// mismatch with the definition.
#[derive(Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(no_params))]
pub struct StructHandle {
    /// The module that defines the type.
    pub module: ModuleHandleIndex,
    /// The name of the type.
    pub name: IdentifierIndex,
    /// There are two ways for a type to have the Kind resource
    /// 1) If it has a type argument of resource
    /// 2) If it was declared as a resource
    /// These "declared" resources are referred to as *nominal resources*
    ///
    /// If `is_nominal_resource` is true, it is a *nominal resource*
    pub is_nominal_resource: bool,
    /// The type formals (identified by their index into the vec) and their kind constraints
    pub type_formals: Vec<Kind>,
}

/// A `FunctionHandle` is a reference to a function. It is composed by a
/// `ModuleHandle` and the name and signature of that function within the module.
///
/// A function within a module is uniquely identified by its name. No overloading is allowed
/// and the verifier enforces that property. The signature of the function is used at link time to
/// ensure the function reference is valid and it is also used by the verifier to type check
/// function calls.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(no_params))]
pub struct FunctionHandle {
    /// The module that defines the function.
    pub module: ModuleHandleIndex,
    /// The name of the function.
    pub name: IdentifierIndex,
    /// The signature of the function.
    pub signature: FunctionSignatureIndex,
}

// DEFINITIONS:
// Definitions are the module code. So the set of types and functions in the module.

/// `StructFieldInformation` indicates whether a struct is native or has user-specified fields
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(no_params))]
pub enum StructFieldInformation {
    Native,
    Declared {
        /// The number of fields in this type.
        field_count: MemberCount,
        /// The starting index for the fields of this type. `FieldDefinition`s for each type must
        /// be consecutively stored in the `FieldDefinition` table.
        fields: FieldDefinitionIndex,
    },
}

/// A `StructDefinition` is a type definition. It either indicates it is native or
// defines all the user-specified fields declared on the type.
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(no_params))]
pub struct StructDefinition {
    /// The `StructHandle` for this `StructDefinition`. This has the name and the resource flag
    /// for the type.
    pub struct_handle: StructHandleIndex,
    /// Contains either
    /// - Information indicating the struct is native and has no accessible fields
    /// - Information indicating the number of fields and the start `FieldDefinitionIndex`
    pub field_information: StructFieldInformation,
}

impl StructDefinition {
    pub fn declared_field_count(&self) -> Result<MemberCount, VMStatus> {
        match &self.field_information {
            // TODO we might want a more informative error here
            StructFieldInformation::Native => Err(VMStatus::new(StatusCode::LINKER_ERROR)),
            StructFieldInformation::Declared { field_count, .. } => Ok(*field_count),
        }
    }
}
/// A `FieldDefinition` is the definition of a field: the type the field is defined on,
/// its name and the field type.
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(no_params))]
pub struct FieldDefinition {
    /// The type (resource or unrestricted) the field is defined on.
    pub struct_: StructHandleIndex,
    /// The name of the field.
    pub name: IdentifierIndex,
    /// The type of the field.
    pub signature: TypeSignatureIndex,
}

/// A `FunctionDefinition` is the implementation of a function. It defines
/// the *prototype* of the function and the function body.
#[derive(Clone, Debug, Default, Eq, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(params = "usize"))]
pub struct FunctionDefinition {
    /// The prototype of the function (module, name, signature).
    pub function: FunctionHandleIndex,
    /// Flags for this function (private, public, native, etc.)
    pub flags: u8,
    /// List of nominal resources (declared in this module) that the procedure might access
    /// Either through: BorrowGlobal, MoveFrom, or transitively through another procedure
    /// This list of acquires grants the borrow checker the ability to statically verify the safety
    /// of references into global storage
    ///
    /// Not in the signature as it is not needed outside of the declaring module
    ///
    /// Note, there is no LocalsSignatureIndex with each struct definition index, as global
    /// resources cannot currently take type arguments
    pub acquires_global_resources: Vec<StructDefinitionIndex>,
    /// Code for this function.
    #[cfg_attr(
        any(test, feature = "testing"),
        proptest(strategy = "any_with::<CodeUnit>(params)")
    )]
    pub code: CodeUnit,
}

impl FunctionDefinition {
    /// Returns whether the FunctionDefinition is public.
    pub fn is_public(&self) -> bool {
        self.flags & CodeUnit::PUBLIC != 0
    }
    /// Returns whether the FunctionDefinition is native.
    pub fn is_native(&self) -> bool {
        self.flags & CodeUnit::NATIVE != 0
    }
}

// Signature
// A signature can be for a type (field, local) or for a function - return type: (arguments).
// They both go into the signature table so there is a marker that tags the signature.
// Signature usually don't carry a size and you have to read them to get to the end.

/// A type definition. `SignatureToken` allows the definition of the set of known types and their
/// composition.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(no_params))]
pub struct TypeSignature(pub SignatureToken);

/// A `FunctionSignature` describes the types of a function.
///
/// The `FunctionSignature` is polymorphic: it can have type parameters in the argument and return
/// types and carries kind constraints for those type parameters (empty list for non-generic
/// functions).
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(params = "usize"))]
pub struct FunctionSignature {
    /// The list of return types.
    #[cfg_attr(
        any(test, feature = "testing"),
        proptest(strategy = "vec(any::<SignatureToken>(), 0..=params)")
    )]
    pub return_types: Vec<SignatureToken>,
    /// The list of arguments to the function.
    #[cfg_attr(
        any(test, feature = "testing"),
        proptest(strategy = "vec(any::<SignatureToken>(), 0..=params)")
    )]
    pub arg_types: Vec<SignatureToken>,
    /// The type formals (identified by their index into the vec) and their kind constraints
    pub type_formals: Vec<Kind>,
}

/// A `LocalsSignature` is the list of locals used by a function.
///
/// Locals include the arguments to the function from position `0` to argument `count - 1`.
/// The remaining elements are the type of each local.
#[derive(Clone, Debug, Default, Eq, Hash, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(params = "usize"))]
pub struct LocalsSignature(
    #[cfg_attr(
        any(test, feature = "testing"),
        proptest(strategy = "vec(any::<SignatureToken>(), 0..=params)")
    )]
    pub Vec<SignatureToken>,
);

impl LocalsSignature {
    /// Length of the `LocalsSignature`.
    #[inline]
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Whether the function has no locals (both arguments or locals).
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }
}

/// Type parameters are encoded as indices. This index can also be used to lookup the kind of a
/// type parameter in the `FunctionSignature/Handle` and `StructHandle`.
pub type TypeParameterIndex = u16;

/// A `Kind` classifies types into sets with rules each set must follow.
///
/// Currently there are three kinds in Move: `All`, `Resource` and `Unrestricted`.
#[derive(Debug, Clone, Eq, Copy, Hash, Ord, PartialEq, PartialOrd)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
pub enum Kind {
    /// Represents the super set of all types. The type might actually be a `Resource` or
    /// `Unrestricted` A type might be in this set if it is not known to be a `Resource` or
    /// `Unrestricted`
    ///   - This occurs when there is a type parameter with this kind as a constraint
    All,
    /// `Resource` types must follow move semantics and various resource safety rules, namely:
    /// - `Resource` values cannot be copied
    /// - `Resource` values cannot be popped, i.e. they must be used
    Resource,
    /// `Unrestricted` types do not need to follow the `Resource` rules.
    /// - `Unrestricted` values can be copied
    /// - `Unrestricted` values can be popped
    Unrestricted,
}

impl Kind {
    /// Checks if the given kind is a sub-kind of another.
    #[inline]
    pub fn is_sub_kind_of(self, k: Kind) -> bool {
        use Kind::*;

        match (self, k) {
            (_, All) | (Resource, Resource) | (Unrestricted, Unrestricted) => true,
            _ => false,
        }
    }

    /// Helper function to determine the kind of a struct instance by taking the kind of a type
    /// actual and join it with the existing partial result.
    pub fn join(self, other: &Kind) -> Kind {
        match (self, other) {
            (Kind::All, _) | (_, Kind::All) => Kind::All,
            (Kind::Resource, _) | (_, Kind::Resource) => Kind::Resource,
            (Kind::Unrestricted, Kind::Unrestricted) => Kind::Unrestricted,
        }
    }
}

/// A `SignatureToken` is a type declaration for a location.
///
/// Any location in the system has a TypeSignature.
/// A TypeSignature is also used in composed signatures.
///
/// A SignatureToken can express more types than the VM can handle safely, and correctness is
/// enforced by the verifier.
#[derive(Clone, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum SignatureToken {
    /// Boolean, `true` or `false`.
    Bool,
    /// Unsigned integers, 64 bits length.
    U64,
    /// Strings, immutable, utf8 representation.
    String,
    /// ByteArray, variable size, immutable byte array.
    ByteArray,
    /// Address, a 32 bytes immutable type.
    Address,
    /// MOVE user type, resource or unrestricted
    Struct(StructHandleIndex, Vec<SignatureToken>),
    /// Reference to a type.
    Reference(Box<SignatureToken>),
    /// Mutable reference to a type.
    MutableReference(Box<SignatureToken>),
    /// Type parameter.
    TypeParameter(TypeParameterIndex),
}

/// `Arbitrary` for `SignatureToken` cannot be derived automatically as it's a recursive type.
#[cfg(any(test, feature = "testing"))]
impl Arbitrary for SignatureToken {
    type Strategy = BoxedStrategy<Self>;
    type Parameters = ();

    fn arbitrary_with(_params: Self::Parameters) -> Self::Strategy {
        use SignatureToken::*;

        let leaf = prop_oneof![
            Just(Bool),
            Just(U64),
            Just(String),
            Just(ByteArray),
            Just(Address),
            // TODO: generate type actuals when generics is implemented
            any::<StructHandleIndex>().prop_map(|sh_idx| Struct(sh_idx, vec![])),
            any::<TypeParameterIndex>().prop_map(TypeParameter),
        ];
        leaf.prop_recursive(
            8,  // levels deep
            16, // max size
            1,  // items per collection
            |inner| {
                prop_oneof![
                    inner.clone().prop_map(|token| Reference(Box::new(token))),
                    inner
                        .clone()
                        .prop_map(|token| MutableReference(Box::new(token))),
                ]
            },
        )
        .boxed()
    }
}

impl ::std::fmt::Debug for SignatureToken {
    fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
        match self {
            SignatureToken::Bool => write!(f, "Bool"),
            SignatureToken::U64 => write!(f, "U64"),
            SignatureToken::String => write!(f, "String"),
            SignatureToken::ByteArray => write!(f, "ByteArray"),
            SignatureToken::Address => write!(f, "Address"),
            SignatureToken::Struct(idx, types) => write!(f, "Struct({:?}, {:?})", idx, types),
            SignatureToken::Reference(boxed) => write!(f, "Reference({:?})", boxed),
            SignatureToken::MutableReference(boxed) => write!(f, "MutableReference({:?})", boxed),
            SignatureToken::TypeParameter(idx) => write!(f, "TypeParameter({:?})", idx),
        }
    }
}

impl SignatureToken {
    /// If a `SignatureToken` is a reference it returns the underlying type of the reference (e.g.
    /// U64 for &U64).
    #[inline]
    pub fn get_struct_handle_from_reference(
        reference_signature: &SignatureToken,
    ) -> Option<StructHandleIndex> {
        match reference_signature {
            SignatureToken::Reference(signature) => match **signature {
                SignatureToken::Struct(idx, _) => Some(idx),
                _ => None,
            },
            SignatureToken::MutableReference(signature) => match **signature {
                SignatureToken::Struct(idx, _) => Some(idx),
                _ => None,
            },
            _ => None,
        }
    }

    /// Returns the type actuals if the signature token is a reference to a struct instance.
    pub fn get_type_actuals_from_reference(&self) -> Option<&[SignatureToken]> {
        use SignatureToken::*;

        match self {
            Reference(box_) | MutableReference(box_) => match &**box_ {
                Struct(_, tys) => Some(&tys),
                _ => None,
            },
            _ => None,
        }
    }

    /// Returns the "value kind" for the `SignatureToken`
    #[inline]
    pub fn signature_token_kind(&self) -> SignatureTokenKind {
        // TODO: SignatureTokenKind is out-dated. fix/update/remove SignatureTokenKind and see if
        // this function needs to be cleaned up
        use SignatureToken::*;

        match self {
            Reference(_) => SignatureTokenKind::Reference,
            MutableReference(_) => SignatureTokenKind::MutableReference,
            Bool | U64 | ByteArray | String | Address | Struct(_, _) => SignatureTokenKind::Value,
            // TODO: This is a temporary hack to please the verifier. SignatureTokenKind will soon
            // be completely removed. `SignatureTokenView::kind()` should be used instead.
            TypeParameter(_) => SignatureTokenKind::Value,
        }
    }

    /// Returns the `StructHandleIndex` for a `SignatureToken` that contains a reference to a user
    /// defined type (a resource or unrestricted type).
    #[inline]
    pub fn struct_index(&self) -> Option<StructHandleIndex> {
        use SignatureToken::*;

        match self {
            Struct(sh_idx, _) => Some(*sh_idx),
            Reference(token) | MutableReference(token) => token.struct_index(),
            Bool | U64 | ByteArray | String | Address | TypeParameter(_) => None,
        }
    }

    /// Returns `true` if the `SignatureToken` is a primitive type.
    pub fn is_primitive(&self) -> bool {
        use SignatureToken::*;
        match self {
            Bool | U64 | String | ByteArray | Address => true,
            Struct(_, _) | Reference(_) | MutableReference(_) | TypeParameter(_) => false,
        }
    }

    /// Checks if the signature token is usable for Eq and Neq.
    ///
    /// Currently equality operations are only allowed on:
    /// - Bool
    /// - U64
    /// - String
    /// - ByteArray
    /// - Address
    /// - Reference or Mutable reference to these types
    pub fn allows_equality(&self) -> bool {
        use SignatureToken::*;
        match self {
            Struct(_, _) => false,
            Reference(token) | MutableReference(token) => token.is_primitive(),
            token => token.is_primitive(),
        }
    }

    /// Returns true if the `SignatureToken` is any kind of reference (mutable and immutable).
    pub fn is_reference(&self) -> bool {
        use SignatureToken::*;

        match self {
            Reference(_) | MutableReference(_) => true,
            _ => false,
        }
    }

    /// Returns true if the `SignatureToken` is a mutable reference.
    pub fn is_mutable_reference(&self) -> bool {
        use SignatureToken::*;

        match self {
            MutableReference(_) => true,
            _ => false,
        }
    }

    /// Set the index to this one. Useful for random testing.
    ///
    /// Panics if this token doesn't contain a struct handle.
    pub fn debug_set_sh_idx(&mut self, sh_idx: StructHandleIndex) {
        match self {
            SignatureToken::Struct(ref mut wrapped, _) => *wrapped = sh_idx,
            SignatureToken::Reference(ref mut token)
            | SignatureToken::MutableReference(ref mut token) => token.debug_set_sh_idx(sh_idx),
            other => panic!(
                "debug_set_sh_idx (to {}) called for non-struct token {:?}",
                sh_idx, other
            ),
        }
    }

    /// Creating a new type by Substituting the type variables with type actuals.
    pub fn substitute(&self, tys: &[SignatureToken]) -> SignatureToken {
        use SignatureToken::*;

        match self {
            Bool => Bool,
            U64 => U64,
            String => String,
            ByteArray => ByteArray,
            Address => Address,
            Struct(idx, actuals) => Struct(
                *idx,
                actuals
                    .iter()
                    .map(|ty| ty.substitute(tys))
                    .collect::<Vec<_>>(),
            ),
            Reference(ty) => Reference(Box::new(ty.substitute(tys))),
            MutableReference(ty) => MutableReference(Box::new(ty.substitute(tys))),
            TypeParameter(idx) => tys[*idx as usize].clone(),
        }
    }

    /// Returns the kind of the signature token in the given context (module, function/struct).
    /// The context is needed to determine the kinds of structs & type variables.
    pub fn kind(
        (struct_handles, type_formals): (&[StructHandle], &[Kind]),
        ty: &SignatureToken,
    ) -> Kind {
        use SignatureToken::*;

        match ty {
            // The primitive types & references have kind unrestricted.
            Bool | U64 | String | ByteArray | Address | Reference(_) | MutableReference(_) => {
                Kind::Unrestricted
            }

            // To get the kind of a type parameter, we lookup its constraint in the formals.
            TypeParameter(idx) => type_formals[*idx as usize],

            Struct(idx, tys) => {
                // Get the struct handle at idx. Note the index could be out of bounds.
                let sh = &struct_handles[idx.0 as usize];

                if sh.is_nominal_resource {
                    return Kind::Resource;
                }

                // Gather the kinds of the type actuals.
                let kinds = tys
                    .iter()
                    .map(|ty| Self::kind((struct_handles, type_formals), ty))
                    .collect::<Vec<_>>();

                // Derive the kind of the struct.
                //   - If any of the type actuals has kind `all`, then the struct has kind `all`.
                //     - `all` means some part of the type can be either `resource` or
                //       `unrestricted`.
                //     - Therefore it is also impossible to determine the kind of the type as a
                //       whole, and thus `all`.
                //   - If none of the type actuals has kind `all`, then the struct is a resource if
                //     and only if one of the type actuals has kind `resource`.
                kinds.iter().fold(Kind::Unrestricted, Kind::join)
            }
        }
    }
}

/// A `CodeUnit` is the body of a function. It has the function header and the instruction stream.
#[derive(Clone, Debug, Default, Eq, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(params = "usize"))]
pub struct CodeUnit {
    /// Max stack size for the function - currently unused.
    pub max_stack_size: u16,
    /// List of locals type. All locals are typed.
    pub locals: LocalsSignatureIndex,
    /// Code stream, function body.
    #[cfg_attr(
        any(test, feature = "testing"),
        proptest(strategy = "vec(any::<Bytecode>(), 0..=params)")
    )]
    pub code: Vec<Bytecode>,
}

/// Flags for `FunctionDeclaration`.
impl CodeUnit {
    /// Function can be invoked outside of its declaring module.
    pub const PUBLIC: u8 = 0x1;
    /// A native function implemented in Rust.
    pub const NATIVE: u8 = 0x2;
}

/// `Bytecode` is a VM instruction of variable size. The type of the bytecode (opcode) defines
/// the size of the bytecode.
///
/// Bytecodes operate on a stack machine and each bytecode has side effect on the stack and the
/// instruction stream.
#[derive(Clone, Hash, Eq, PartialEq)]
#[cfg_attr(any(test, feature = "testing"), derive(Arbitrary))]
#[cfg_attr(any(test, feature = "testing"), proptest(no_params))]
pub enum Bytecode {
    /// Pop and discard the value at the top of the stack.
    /// The value on the stack must be an unrestricted type.
    ///
    /// Stack transition:
    ///
    /// ```..., value -> ...```
    Pop,
    /// Return from function, possibly with values according to the return types in the
    /// function signature. The returned values are pushed on the stack.
    /// The function signature of the function being executed defines the semantic of
    /// the Ret opcode.
    ///
    /// Stack transition:
    ///
    /// ```..., arg_val(1), ..., arg_val(n) -> ..., return_val(1), ..., return_val(n)```
    Ret,
    /// Branch to the instruction at position `CodeOffset` if the value at the top of the stack
    /// is true. Code offsets are relative to the start of the instruction stream.
    ///
    /// Stack transition:
    ///
    /// ```..., bool_value -> ...```
    BrTrue(CodeOffset),
    /// Branch to the instruction at position `CodeOffset` if the value at the top of the stack
    /// is false. Code offsets are relative to the start of the instruction stream.
    ///
    /// Stack transition:
    ///
    /// ```..., bool_value -> ...```
    BrFalse(CodeOffset),
    /// Branch unconditionally to the instruction at position `CodeOffset`. Code offsets are
    /// relative to the start of the instruction stream.
    ///
    /// Stack transition: none
    Branch(CodeOffset),
    /// Push integer constant onto the stack.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., u64_value```
    LdConst(u64),
    /// Push a string literal onto the stack. The string is loaded from the `UserStrings` via
    /// `UserStringIndex`.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., string_value```
    LdStr(UserStringIndex),
    /// Push a `ByteArray` literal onto the stack. The `ByteArray` is loaded from the
    /// `ByteArrayPool` via `ByteArrayPoolIndex`.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., bytearray_value```
    LdByteArray(ByteArrayPoolIndex),
    /// Push an 'Address' literal onto the stack. The address is loaded from the
    /// `AddressPool` via `AddressPoolIndex`.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., address_value```
    LdAddr(AddressPoolIndex),
    /// Push `true` onto the stack.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., true```
    LdTrue,
    /// Push `false` onto the stack.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., false```
    LdFalse,
    /// Push the local identified by `LocalIndex` onto the stack. The value is copied and the
    /// local is still safe to use.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., value```
    CopyLoc(LocalIndex),
    /// Push the local identified by `LocalIndex` onto the stack. The local is moved and it is
    /// invalid to use from that point on, unless a store operation writes to the local before
    /// any read to that local.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., value```
    MoveLoc(LocalIndex),
    /// Pop value from the top of the stack and store it into the function locals at
    /// position `LocalIndex`.
    ///
    /// Stack transition:
    ///
    /// ```..., value -> ...```
    StLoc(LocalIndex),
    /// Call a function. The stack has the arguments pushed first to last.
    /// The arguments are consumed and pushed to the locals of the function.
    /// Return values are pushed on the stack and available to the caller.
    ///
    /// Stack transition:
    ///
    /// ```..., arg(1), arg(2), ...,  arg(n) -> ..., return_value(1), return_value(2), ...,
    /// return_value(k)```
    Call(FunctionHandleIndex, LocalsSignatureIndex),
    /// Create an instance of the type specified via `StructHandleIndex` and push it on the stack.
    /// The values of the fields of the struct, in the order they appear in the struct declaration,
    /// must be pushed on the stack. All fields must be provided.
    ///
    /// A Pack instruction must fully initialize an instance.
    ///
    /// Stack transition:
    ///
    /// ```..., field(1)_value, field(2)_value, ..., field(n)_value -> ..., instance_value```
    Pack(StructDefinitionIndex, LocalsSignatureIndex),
    /// Destroy an instance of a type and push the values bound to each field on the
    /// stack.
    ///
    /// The values of the fields of the instance appear on the stack in the order defined
    /// in the struct definition.
    ///
    /// This order makes Unpack<T> the inverse of Pack<T>. So `Unpack<T>; Pack<T>` is the identity
    /// for struct T.
    ///
    /// Stack transition:
    ///
    /// ```..., instance_value -> ..., field(1)_value, field(2)_value, ..., field(n)_value```
    Unpack(StructDefinitionIndex, LocalsSignatureIndex),
    /// Read a reference. The reference is on the stack, it is consumed and the value read is
    /// pushed on the stack.
    ///
    /// Reading a reference performs a copy of the value referenced. As such
    /// ReadRef cannot be used on a reference to a Resource.
    ///
    /// Stack transition:
    ///
    /// ```..., reference_value -> ..., value```
    ReadRef,
    /// Write to a reference. The reference and the value are on the stack and are consumed.
    ///
    ///
    /// The reference must be to an unrestricted type because Resources cannot be overwritten.
    ///
    /// Stack transition:
    ///
    /// ```..., value, reference_value -> ...```
    WriteRef,
    /// Convert a mutable reference to an immutable reference.
    ///
    /// Stack transition:
    ///
    /// ```..., reference_value -> ..., reference_value```
    FreezeRef,
    /// Load a mutable reference to a local identified by LocalIndex.
    ///
    /// The local must not be a reference.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., reference```
    MutBorrowLoc(LocalIndex),
    /// Load an immutable reference to a local identified by LocalIndex.
    ///
    /// The local must not be a reference.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., reference```
    ImmBorrowLoc(LocalIndex),
    /// Load a mutable reference to a field identified by `FieldDefinitionIndex`.
    /// The top of the stack must be a mutable reference to a type that contains the field
    /// definition.
    ///
    /// Stack transition:
    ///
    /// ```..., reference -> ..., field_reference```
    MutBorrowField(FieldDefinitionIndex),
    /// Load an immutable reference to a field identified by `FieldDefinitionIndex`.
    /// The top of the stack must be a reference to a type that contains the field definition.
    ///
    /// Stack transition:
    ///
    /// ```..., reference -> ..., field_reference```
    ImmBorrowField(FieldDefinitionIndex),
    /// Return a mutable reference to an instance of type `StructDefinitionIndex` published at the
    /// address passed as argument. Abort execution if such an object does not exist or if a
    /// reference has already been handed out.
    ///
    /// Stack transition:
    ///
    /// ```..., address_value -> ..., reference_value```
    MutBorrowGlobal(StructDefinitionIndex, LocalsSignatureIndex),
    /// Return an immutable reference to an instance of type `StructDefinitionIndex` published at
    /// the address passed as argument. Abort execution if such an object does not exist or if a
    /// reference has already been handed out.
    ///
    /// Stack transition:
    ///
    /// ```..., address_value -> ..., reference_value```
    ImmBorrowGlobal(StructDefinitionIndex, LocalsSignatureIndex),
    /// Add the 2 u64 at the top of the stack and pushes the result on the stack.
    /// The operation aborts the transaction in case of overflow.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., u64_value```
    Add,
    /// Subtract the 2 u64 at the top of the stack and pushes the result on the stack.
    /// The operation aborts the transaction in case of underflow.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., u64_value```
    Sub,
    /// Multiply the 2 u64 at the top of the stack and pushes the result on the stack.
    /// The operation aborts the transaction in case of overflow.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., u64_value```
    Mul,
    /// Perform a modulo operation on the 2 u64 at the top of the stack and pushes the
    /// result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., u64_value```
    Mod,
    /// Divide the 2 u64 at the top of the stack and pushes the result on the stack.
    /// The operation aborts the transaction in case of "divide by 0".
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., u64_value```
    Div,
    /// Bitwise OR the 2 u64 at the top of the stack and pushes the result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., u64_value```
    BitOr,
    /// Bitwise AND the 2 u64 at the top of the stack and pushes the result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., u64_value```
    BitAnd,
    /// Bitwise XOR the 2 u64 at the top of the stack and pushes the result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., u64_value```
    Xor,
    /// Logical OR the 2 bool at the top of the stack and pushes the result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., bool_value(1), bool_value(2) -> ..., bool_value```
    Or,
    /// Logical AND the 2 bool at the top of the stack and pushes the result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., bool_value(1), bool_value(2) -> ..., bool_value```
    And,
    /// Logical NOT the bool at the top of the stack and pushes the result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., bool_value -> ..., bool_value```
    Not,
    /// Compare for equality the 2 value at the top of the stack and pushes the
    /// result on the stack.
    /// The values on the stack cannot be resources or they will be consumed and so destroyed.
    ///
    /// Stack transition:
    ///
    /// ```..., value(1), value(2) -> ..., bool_value```
    Eq,
    /// Compare for inequality the 2 value at the top of the stack and pushes the
    /// result on the stack.
    /// The values on the stack cannot be resources or they will be consumed and so destroyed.
    ///
    /// Stack transition:
    ///
    /// ```..., value(1), value(2) -> ..., bool_value```
    Neq,
    /// Perform a "less than" operation of the 2 u64 at the top of the stack and pushes the
    /// result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., bool_value```
    Lt,
    /// Perform a "greater than" operation of the 2 u64 at the top of the stack and pushes the
    /// result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., bool_value```
    Gt,
    /// Perform a "less than or equal" operation of the 2 u64 at the top of the stack and pushes
    /// the result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., bool_value```
    Le,
    /// Perform a "greater than or equal" than operation of the 2 u64 at the top of the stack
    /// and pushes the result on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., u64_value(1), u64_value(2) -> ..., bool_value```
    Ge,
    /// Abort execution with errorcode
    ///
    ///
    /// Stack transition:
    ///
    /// ```..., errorcode -> ...```
    Abort,
    /// Get gas unit price from the transaction and pushes it on the stack.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., u64_value```
    GetTxnGasUnitPrice,
    /// Get max gas units set in the transaction and pushes it on the stack.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., u64_value```
    GetTxnMaxGasUnits,
    /// Get remaining gas for the given transaction at the point of execution of this bytecode.
    /// The result is pushed on the stack.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., u64_value```
    GetGasRemaining,
    /// Get the sender address from the transaction and pushes it on the stack.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., address_value```
    GetTxnSenderAddress,
    /// Returns whether or not a given address has an object of type StructDefinitionIndex
    /// published already
    ///
    /// Stack transition:
    ///
    /// ```..., address_value -> ..., bool_value```
    Exists(StructDefinitionIndex, LocalsSignatureIndex),
    /// Move the instance of type StructDefinitionIndex, at the address at the top of the stack.
    /// Abort execution if such an object does not exist.
    ///
    /// Stack transition:
    ///
    /// ```..., address_value -> ..., value```
    MoveFrom(StructDefinitionIndex, LocalsSignatureIndex),
    /// Move the instance at the top of the stack to the address of the sender.
    /// Abort execution if an object of type StructDefinitionIndex already exists in address.
    ///
    /// Stack transition:
    ///
    /// ```..., value -> ...```
    MoveToSender(StructDefinitionIndex, LocalsSignatureIndex),
    /// Create an account at the address specified. Does not return anything.
    ///
    /// Stack transition:
    ///
    /// ```..., address_value -> ...```
    CreateAccount,
    /// Get the sequence number submitted with the transaction and pushes it on the stack.
    ///
    /// Stack transition:
    ///
    /// ```... -> ..., u64_value```
    GetTxnSequenceNumber,
    /// Get the public key of the sender from the transaction and pushes it on the stack.
    ///
    /// Stack transition:
    ///
    /// ```..., -> ..., bytearray_value```
    GetTxnPublicKey,
}

/// The number of bytecode instructions.
/// This is necessary for checking that all instructions are covered since Rust
/// does not provide a way of determining the number of variants of an enum.
pub const NUMBER_OF_BYTECODE_INSTRUCTIONS: usize = 54;

impl ::std::fmt::Debug for Bytecode {
    fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
        match self {
            Bytecode::Pop => write!(f, "Pop"),
            Bytecode::Ret => write!(f, "Ret"),
            Bytecode::BrTrue(a) => write!(f, "BrTrue({})", a),
            Bytecode::BrFalse(a) => write!(f, "BrFalse({})", a),
            Bytecode::Branch(a) => write!(f, "Branch({})", a),
            Bytecode::LdConst(a) => write!(f, "LdConst({})", a),
            Bytecode::LdStr(a) => write!(f, "LdStr({})", a),
            Bytecode::LdByteArray(a) => write!(f, "LdByteArray({})", a),
            Bytecode::LdAddr(a) => write!(f, "LdAddr({})", a),
            Bytecode::LdTrue => write!(f, "LdTrue"),
            Bytecode::LdFalse => write!(f, "LdFalse"),
            Bytecode::CopyLoc(a) => write!(f, "CopyLoc({})", a),
            Bytecode::MoveLoc(a) => write!(f, "MoveLoc({})", a),
            Bytecode::StLoc(a) => write!(f, "StLoc({})", a),
            Bytecode::Call(a, b) => write!(f, "Call({}, {:?})", a, b),
            Bytecode::Pack(a, b) => write!(f, "Pack({}, {:?})", a, b),
            Bytecode::Unpack(a, b) => write!(f, "Unpack({}, {:?})", a, b),
            Bytecode::ReadRef => write!(f, "ReadRef"),
            Bytecode::WriteRef => write!(f, "WriteRef"),
            Bytecode::FreezeRef => write!(f, "FreezeRef"),
            Bytecode::MutBorrowLoc(a) => write!(f, "MutBorrowLoc({})", a),
            Bytecode::ImmBorrowLoc(a) => write!(f, "ImmBorrowLoc({})", a),
            Bytecode::MutBorrowField(a) => write!(f, "MutBorrowField({})", a),
            Bytecode::ImmBorrowField(a) => write!(f, "ImmBorrowField({})", a),
            Bytecode::MutBorrowGlobal(a, b) => write!(f, "MutBorrowGlobal({}, {:?})", a, b),
            Bytecode::ImmBorrowGlobal(a, b) => write!(f, "ImmBorrowGlobal({}, {:?})", a, b),
            Bytecode::Add => write!(f, "Add"),
            Bytecode::Sub => write!(f, "Sub"),
            Bytecode::Mul => write!(f, "Mul"),
            Bytecode::Mod => write!(f, "Mod"),
            Bytecode::Div => write!(f, "Div"),
            Bytecode::BitOr => write!(f, "BitOr"),
            Bytecode::BitAnd => write!(f, "BitAnd"),
            Bytecode::Xor => write!(f, "Xor"),
            Bytecode::Or => write!(f, "Or"),
            Bytecode::And => write!(f, "And"),
            Bytecode::Not => write!(f, "Not"),
            Bytecode::Eq => write!(f, "Eq"),
            Bytecode::Neq => write!(f, "Neq"),
            Bytecode::Lt => write!(f, "Lt"),
            Bytecode::Gt => write!(f, "Gt"),
            Bytecode::Le => write!(f, "Le"),
            Bytecode::Ge => write!(f, "Ge"),
            Bytecode::Abort => write!(f, "Abort"),
            Bytecode::GetTxnGasUnitPrice => write!(f, "GetTxnGasUnitPrice"),
            Bytecode::GetTxnMaxGasUnits => write!(f, "GetTxnMaxGasUnits"),
            Bytecode::GetGasRemaining => write!(f, "GetGasRemaining"),
            Bytecode::GetTxnSenderAddress => write!(f, "GetTxnSenderAddress"),
            Bytecode::Exists(a, b) => write!(f, "Exists({}, {:?})", a, b),
            Bytecode::MoveFrom(a, b) => write!(f, "MoveFrom({}, {:?})", a, b),
            Bytecode::MoveToSender(a, b) => write!(f, "MoveToSender({}, {:?})", a, b),
            Bytecode::CreateAccount => write!(f, "CreateAccount"),
            Bytecode::GetTxnSequenceNumber => write!(f, "GetTxnSequenceNumber"),
            Bytecode::GetTxnPublicKey => write!(f, "GetTxnPublicKey"),
        }
    }
}

impl Bytecode {
    /// Return true if this bytecode instruction always branches
    pub fn is_unconditional_branch(&self) -> bool {
        match self {
            Bytecode::Ret | Bytecode::Abort | Bytecode::Branch(_) => true,
            _ => false,
        }
    }

    /// Return true if the branching behavior of this bytecode instruction depends on a runtime
    /// value
    pub fn is_conditional_branch(&self) -> bool {
        match self {
            Bytecode::BrFalse(_) | Bytecode::BrTrue(_) => true,
            _ => false,
        }
    }

    /// Returns true if this bytecode instruction is either a conditional or an unconditional branch
    pub fn is_branch(&self) -> bool {
        self.is_conditional_branch() || self.is_unconditional_branch()
    }

    /// Returns the offset that this bytecode instruction branches to, if any.
    /// Note that return and abort are branch instructions, but have no offset.
    pub fn offset(&self) -> Option<&CodeOffset> {
        match self {
            Bytecode::BrFalse(offset) | Bytecode::BrTrue(offset) | Bytecode::Branch(offset) => {
                Some(offset)
            }
            _ => None,
        }
    }

    /// Return the successor offsets of this bytecode instruction.
    pub fn get_successors(pc: CodeOffset, code: &[Bytecode]) -> Vec<CodeOffset> {
        checked_precondition!(
            // The program counter could be added to at most twice and must remain
            // within the bounds of the code.
            pc <= u16::max_value() - 2 && (pc as usize) < code.len(),
            "Program counter out of bounds"
        );
        let bytecode = &code[pc as usize];
        let mut v = vec![];

        if let Some(offset) = bytecode.offset() {
            v.push(*offset);
        }

        let next_pc = pc + 1;
        if next_pc >= code.len() as CodeOffset {
            return v;
        }

        if !bytecode.is_unconditional_branch() && !v.contains(&next_pc) {
            // avoid duplicates
            v.push(pc + 1);
        }

        // always give successors in ascending order
        if v.len() > 1 && v[0] > v[1] {
            v.swap(0, 1);
        }

        v
    }
}

/// A `CompiledProgram` defines the structure of a transaction to execute.
/// It has two parts: modules to be published and a transaction script.
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct CompiledProgram {
    /// The modules to be published
    pub modules: Vec<CompiledModule>,
    /// The transaction script to execute
    pub script: CompiledScript,
}

impl CompiledProgram {
    /// Creates a new compiled program from compiled modules and script
    pub fn new(modules: Vec<CompiledModule>, script: CompiledScript) -> Self {
        CompiledProgram { modules, script }
    }
}

// Note that this doesn't derive either `Arbitrary` or `Default` while `CompiledScriptMut` does.
// That's because a CompiledScript is guaranteed to be valid while a CompiledScriptMut isn't.
/// Contains the main function to execute and its dependencies.
///
/// A CompiledScript does not have definition tables because it can only have a `main(args)`.
/// A CompiledScript defines the constant pools (string, address, signatures, etc.), the handle
/// tables (external code references) and it has a `main` definition.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CompiledScript(CompiledScriptMut);

/// A mutable version of `CompiledScript`. Converting to a `CompiledScript` requires this to pass
/// the bounds checker.
#[derive(Clone, Default, Eq, PartialEq, Debug)]
pub struct CompiledScriptMut {
    /// Handles to all modules referenced.
    pub module_handles: Vec<ModuleHandle>,
    /// Handles to external/imported types.
    pub struct_handles: Vec<StructHandle>,
    /// Handles to external/imported functions.
    pub function_handles: Vec<FunctionHandle>,

    /// Type pool. All external types referenced by the transaction.
    pub type_signatures: TypeSignaturePool,
    /// Function signature pool. The signatures of the function referenced by the transaction.
    pub function_signatures: FunctionSignaturePool,
    /// Locals signature pool. The signature of the locals in `main`.
    pub locals_signatures: LocalsSignaturePool,

    /// All identifiers used in this transaction.
    pub identifiers: IdentifierPool,
    /// User strings. All literals used in this transaction.
    pub user_strings: UserStringPool,
    /// ByteArray pool. The byte array literals used in the transaction.
    pub byte_array_pool: ByteArrayPool,
    /// Address pool. The address literals used in the module. Those include literals for
    /// code references (`ModuleHandle`).
    pub address_pool: AddressPool,

    /// The main (script) to execute.
    pub main: FunctionDefinition,
}

impl CompiledScript {
    /// Returns the index of `main` in case a script is converted to a module.
    pub const MAIN_INDEX: FunctionDefinitionIndex = FunctionDefinitionIndex(0);

    /// Returns a reference to the inner `CompiledScriptMut`.
    pub fn as_inner(&self) -> &CompiledScriptMut {
        &self.0
    }

    /// Converts this instance into the inner `CompiledScriptMut`. Converting back to a
    /// `CompiledScript` would require it to be verified again.
    pub fn into_inner(self) -> CompiledScriptMut {
        self.0
    }

    /// Converts a `CompiledScript` into a `CompiledModule` for code that wants a uniform view of
    /// both.
    ///
    /// If a `CompiledScript` has been bounds checked, the corresponding `CompiledModule` can be
    /// assumed to pass the bounds checker as well.
    pub fn into_module(self) -> CompiledModule {
        CompiledModule(self.0.into_module())
    }
}

impl CompiledScriptMut {
    /// Converts this instance into `CompiledScript` after verifying it for basic internal
    /// consistency. This includes bounds checks but no others.
    pub fn freeze(self) -> Result<CompiledScript, Vec<VMStatus>> {
        let fake_module = self.into_module();
        Ok(fake_module.freeze()?.into_script())
    }

    /// Converts a `CompiledScriptMut` to a `CompiledModule` for code that wants a uniform view
    /// of both.
    pub fn into_module(self) -> CompiledModuleMut {
        CompiledModuleMut {
            module_handles: self.module_handles,
            struct_handles: self.struct_handles,
            function_handles: self.function_handles,

            type_signatures: self.type_signatures,
            function_signatures: self.function_signatures,
            locals_signatures: self.locals_signatures,

            identifiers: self.identifiers,
            user_strings: self.user_strings,
            byte_array_pool: self.byte_array_pool,
            address_pool: self.address_pool,

            struct_defs: vec![],
            field_defs: vec![],
            function_defs: vec![self.main],
        }
    }
}

/// A `CompiledModule` defines the structure of a module which is the unit of published code.
///
/// A `CompiledModule` contains a definition of types (with their fields) and functions.
/// It is a unit of code that can be used by transactions or other modules.
///
/// A module is published as a single entry and it is retrieved as a single blob.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CompiledModule(CompiledModuleMut);

/// A mutable version of `CompiledModule`. Converting to a `CompiledModule` requires this to pass
/// the bounds checker.
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct CompiledModuleMut {
    /// Handles to external modules and self at position 0.
    pub module_handles: Vec<ModuleHandle>,
    /// Handles to external and internal types.
    pub struct_handles: Vec<StructHandle>,
    /// Handles to external and internal functions.
    pub function_handles: Vec<FunctionHandle>,

    /// Type pool. A definition for all types used in the module.
    pub type_signatures: TypeSignaturePool,
    /// Function signature pool. Represents all function signatures defined or used in
    /// the module.
    pub function_signatures: FunctionSignaturePool,
    /// Locals signature pool. The signature for all locals of the functions defined in
    /// the module.
    pub locals_signatures: LocalsSignaturePool,

    /// All identifiers used in this module.
    pub identifiers: IdentifierPool,
    /// User strings. All literals used in this module.
    pub user_strings: UserStringPool,
    /// ByteArray pool. The byte array literals used in the module.
    pub byte_array_pool: ByteArrayPool,
    /// Address pool. The address literals used in the module. Those include literals for
    /// code references (`ModuleHandle`).
    pub address_pool: AddressPool,

    /// Types defined in this module.
    pub struct_defs: Vec<StructDefinition>,
    /// Fields defined on types in this module.
    pub field_defs: Vec<FieldDefinition>,
    /// Function defined in this module.
    pub function_defs: Vec<FunctionDefinition>,
}

// Need a custom implementation of Arbitrary because as of proptest-derive 0.1.1, the derivation
// doesn't work for structs with more than 10 fields.
#[cfg(any(test, feature = "testing"))]
impl Arbitrary for CompiledScriptMut {
    type Strategy = BoxedStrategy<Self>;
    /// The size of the compiled script.
    type Parameters = usize;

    fn arbitrary_with(size: Self::Parameters) -> Self::Strategy {
        (
            (
                vec(any::<ModuleHandle>(), 0..=size),
                vec(any::<StructHandle>(), 0..=size),
                vec(any::<FunctionHandle>(), 0..=size),
            ),
            (
                vec(any::<TypeSignature>(), 0..=size),
                vec(any_with::<FunctionSignature>(size), 0..=size),
                vec(any_with::<LocalsSignature>(size), 0..=size),
            ),
            (
                vec(any::<Identifier>(), 0..=size),
                vec(any::<VMString>(), 0..=size),
                vec(any::<ByteArray>(), 0..=size),
                vec(any::<AccountAddress>(), 0..=size),
            ),
            any_with::<FunctionDefinition>(size),
        )
            .prop_map(
                |(
                    (module_handles, struct_handles, function_handles),
                    (type_signatures, function_signatures, locals_signatures),
                    (identifiers, user_strings, byte_array_pool, address_pool),
                    main,
                )| {
                    CompiledScriptMut {
                        module_handles,
                        struct_handles,
                        function_handles,
                        type_signatures,
                        function_signatures,
                        locals_signatures,
                        identifiers,
                        user_strings,
                        byte_array_pool,
                        address_pool,
                        main,
                    }
                },
            )
            .boxed()
    }
}

#[cfg(any(test, feature = "testing"))]
impl Arbitrary for CompiledModuleMut {
    type Strategy = BoxedStrategy<Self>;
    /// The size of the compiled module.
    type Parameters = usize;

    fn arbitrary_with(size: Self::Parameters) -> Self::Strategy {
        (
            (
                vec(any::<ModuleHandle>(), 0..=size),
                vec(any::<StructHandle>(), 0..=size),
                vec(any::<FunctionHandle>(), 0..=size),
            ),
            (
                vec(any::<TypeSignature>(), 0..=size),
                vec(any_with::<FunctionSignature>(size), 0..=size),
                vec(any_with::<LocalsSignature>(size), 0..=size),
            ),
            (
                vec(any::<Identifier>(), 0..=size),
                vec(any::<VMString>(), 0..=size),
                vec(any::<ByteArray>(), 0..=size),
                vec(any::<AccountAddress>(), 0..=size),
            ),
            (
                vec(any::<StructDefinition>(), 0..=size),
                vec(any::<FieldDefinition>(), 0..=size),
                vec(any_with::<FunctionDefinition>(size), 0..=size),
            ),
        )
            .prop_map(
                |(
                    (module_handles, struct_handles, function_handles),
                    (type_signatures, function_signatures, locals_signatures),
                    (identifiers, user_strings, byte_array_pool, address_pool),
                    (struct_defs, field_defs, function_defs),
                )| {
                    CompiledModuleMut {
                        module_handles,
                        struct_handles,
                        function_handles,
                        type_signatures,
                        function_signatures,
                        locals_signatures,
                        identifiers,
                        user_strings,
                        byte_array_pool,
                        address_pool,
                        struct_defs,
                        field_defs,
                        function_defs,
                    }
                },
            )
            .boxed()
    }
}

impl CompiledModuleMut {
    /// Returns the count of a specific `IndexKind`
    pub fn kind_count(&self, kind: IndexKind) -> usize {
        match kind {
            IndexKind::ModuleHandle => self.module_handles.len(),
            IndexKind::StructHandle => self.struct_handles.len(),
            IndexKind::FunctionHandle => self.function_handles.len(),
            IndexKind::StructDefinition => self.struct_defs.len(),
            IndexKind::FieldDefinition => self.field_defs.len(),
            IndexKind::FunctionDefinition => self.function_defs.len(),
            IndexKind::TypeSignature => self.type_signatures.len(),
            IndexKind::FunctionSignature => self.function_signatures.len(),
            IndexKind::LocalsSignature => self.locals_signatures.len(),
            IndexKind::Identifier => self.identifiers.len(),
            IndexKind::UserString => self.user_strings.len(),
            IndexKind::ByteArrayPool => self.byte_array_pool.len(),
            IndexKind::AddressPool => self.address_pool.len(),
            // XXX these two don't seem to belong here
            other @ IndexKind::LocalPool
            | other @ IndexKind::CodeDefinition
            | other @ IndexKind::TypeParameter => panic!("invalid kind for count: {:?}", other),
        }
    }

    /// Converts this instance into `CompiledModule` after verifying it for basic internal
    /// consistency. This includes bounds checks but no others.
    pub fn freeze(self) -> Result<CompiledModule, Vec<VMStatus>> {
        let errors = BoundsChecker::new(&self).verify();
        if errors.is_empty() {
            Ok(CompiledModule(self))
        } else {
            Err(errors)
        }
    }
}

impl CompiledModule {
    /// By convention, the index of the module being implemented is 0.
    pub const IMPLEMENTED_MODULE_INDEX: u16 = 0;

    /// Returns a reference to the inner `CompiledModuleMut`.
    pub fn as_inner(&self) -> &CompiledModuleMut {
        &self.0
    }

    /// Converts this instance into the inner `CompiledModuleMut`. Converting back to a
    /// `CompiledModule` would require it to be verified again.
    pub fn into_inner(self) -> CompiledModuleMut {
        self.0
    }

    /// Returns the number of items of a specific `IndexKind`.
    pub fn kind_count(&self, kind: IndexKind) -> usize {
        self.as_inner().kind_count(kind)
    }

    /// Returns the code key of `module_handle`
    pub fn module_id_for_handle(&self, module_handle: &ModuleHandle) -> ModuleId {
        ModuleId::new(
            *self.address_at(module_handle.address),
            self.identifier_at(module_handle.name).to_owned(),
        )
    }

    /// Returns the code key of `self`
    pub fn self_id(&self) -> ModuleId {
        self.module_id_for_handle(self.self_handle())
    }

    /// This function should only be called on an instance of CompiledModule obtained by invoking
    /// into_module on some instance of CompiledScript. This function is the inverse of
    /// into_module, i.e., script.into_module().into_script() == script.
    pub fn into_script(self) -> CompiledScript {
        let mut inner = self.into_inner();
        let main = inner.function_defs.remove(0);
        CompiledScript(CompiledScriptMut {
            module_handles: inner.module_handles,
            struct_handles: inner.struct_handles,
            function_handles: inner.function_handles,

            type_signatures: inner.type_signatures,
            function_signatures: inner.function_signatures,
            locals_signatures: inner.locals_signatures,

            identifiers: inner.identifiers,
            user_strings: inner.user_strings,
            byte_array_pool: inner.byte_array_pool,
            address_pool: inner.address_pool,

            main,
        })
    }
}

/// Return the simplest module that will pass the bounds checker
pub fn empty_module() -> CompiledModuleMut {
    CompiledModuleMut {
        module_handles: vec![ModuleHandle {
            address: AddressPoolIndex::new(0),
            name: IdentifierIndex::new(0),
        }],
        address_pool: vec![AccountAddress::default()],
        identifiers: vec![self_module_name().to_owned()],
        user_strings: vec![],
        function_defs: vec![],
        struct_defs: vec![],
        field_defs: vec![],
        struct_handles: vec![],
        function_handles: vec![],
        type_signatures: vec![],
        function_signatures: vec![],
        locals_signatures: vec![LocalsSignature(vec![])],
        byte_array_pool: vec![],
    }
}

/// Create the following module which is convenient in tests:
/// // module <SELF> {
/// //     struct Bar { x: u64 }
/// //
/// //     foo() {
/// //     }
/// // }
pub fn basic_test_module() -> CompiledModuleMut {
    let mut m = empty_module();

    m.function_signatures.push(FunctionSignature {
        return_types: vec![],
        arg_types: vec![],
        type_formals: vec![],
    });

    m.function_handles.push(FunctionHandle {
        module: ModuleHandleIndex::new(0),
        name: IdentifierIndex::new(m.identifiers.len() as u16),
        signature: FunctionSignatureIndex::new(0),
    });
    m.identifiers
        .push(Identifier::new("foo".to_string()).unwrap());

    m.function_defs.push(FunctionDefinition {
        function: FunctionHandleIndex::new(0),
        flags: 0,
        acquires_global_resources: vec![],
        code: CodeUnit {
            max_stack_size: 0,
            locals: LocalsSignatureIndex::new(0),
            code: vec![],
        },
    });

    m.struct_handles.push(StructHandle {
        module: ModuleHandleIndex::new(0),
        name: IdentifierIndex::new(m.identifiers.len() as u16),
        is_nominal_resource: false,
        type_formals: vec![],
    });
    m.identifiers
        .push(Identifier::new("Bar".to_string()).unwrap());

    m.struct_defs.push(StructDefinition {
        struct_handle: StructHandleIndex::new(0),
        field_information: StructFieldInformation::Declared {
            field_count: 1,
            fields: FieldDefinitionIndex::new(0),
        },
    });

    m.field_defs.push(FieldDefinition {
        struct_: StructHandleIndex::new(0),
        name: IdentifierIndex::new(m.identifiers.len() as u16),
        signature: TypeSignatureIndex::new(0),
    });
    m.identifiers
        .push(Identifier::new("x".to_string()).unwrap());

    m.type_signatures.push(TypeSignature(SignatureToken::U64));

    m
}

/// Create a dummy module to wrap the bytecode program in local@code
pub fn dummy_procedure_module(code: Vec<Bytecode>) -> CompiledModule {
    let mut module = empty_module();
    let mut code_unit = CodeUnit::default();
    code_unit.code = code;
    let mut fun_def = FunctionDefinition::default();
    fun_def.code = code_unit;

    module.function_signatures.push(FunctionSignature {
        arg_types: vec![],
        return_types: vec![],
        type_formals: vec![],
    });
    let fun_handle = FunctionHandle {
        module: ModuleHandleIndex(0),
        name: IdentifierIndex(0),
        signature: FunctionSignatureIndex(0),
    };

    module.function_handles.push(fun_handle);
    module.function_defs.push(fun_def);
    module.freeze().unwrap()
}