1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//! The `entry_writer` module helps implement the TPU's write stage. It
//! writes entries to the given writer, which is typically a file or
//! stdout, and then sends the Entry to its output channel.

use bank::Bank;
use bincode;
use entry::Entry;
use std::io::{self, BufRead, Error, ErrorKind, Write};
use std::mem::size_of;

pub struct EntryWriter<'a, W> {
    bank: &'a Bank,
    writer: W,
}

impl<'a, W: Write> EntryWriter<'a, W> {
    /// Create a new Tpu that wraps the given Bank.
    pub fn new(bank: &'a Bank, writer: W) -> Self {
        EntryWriter { bank, writer }
    }

    fn write_entry(writer: &mut W, entry: &Entry) -> io::Result<()> {
        let entry_bytes =
            bincode::serialize(&entry).map_err(|e| Error::new(ErrorKind::Other, e.to_string()))?;

        let len = entry_bytes.len();
        let len_bytes =
            bincode::serialize(&len).map_err(|e| Error::new(ErrorKind::Other, e.to_string()))?;

        writer.write_all(&len_bytes[..])?;
        writer.write_all(&entry_bytes[..])?;
        writer.flush()
    }

    pub fn write_entries<I>(writer: &mut W, entries: I) -> io::Result<()>
    where
        I: IntoIterator<Item = Entry>,
    {
        for entry in entries {
            Self::write_entry(writer, &entry)?;
        }
        Ok(())
    }

    fn write_and_register_entry(&mut self, entry: &Entry) -> io::Result<()> {
        trace!("write_and_register_entry entry");
        if !entry.has_more {
            self.bank.register_entry_id(&entry.id);
        }
        Self::write_entry(&mut self.writer, entry)
    }

    pub fn write_and_register_entries(&mut self, entries: &[Entry]) -> io::Result<()> {
        for entry in entries {
            self.write_and_register_entry(&entry)?;
        }
        Ok(())
    }
}

struct EntryReader<R: BufRead> {
    reader: R,
    entry_bytes: Vec<u8>,
}

impl<R: BufRead> Iterator for EntryReader<R> {
    type Item = io::Result<Entry>;

    fn next(&mut self) -> Option<io::Result<Entry>> {
        let mut entry_len_bytes = [0u8; size_of::<usize>()];

        if self.reader.read_exact(&mut entry_len_bytes[..]).is_ok() {
            let entry_len = bincode::deserialize(&entry_len_bytes).unwrap();

            if entry_len > self.entry_bytes.len() {
                self.entry_bytes.resize(entry_len, 0);
            }

            if let Err(e) = self.reader.read_exact(&mut self.entry_bytes[..entry_len]) {
                Some(Err(e))
            } else {
                Some(
                    bincode::deserialize(&self.entry_bytes)
                        .map_err(|e| Error::new(ErrorKind::Other, e.to_string())),
                )
            }
        } else {
            None // EOF (probably)
        }
    }
}

/// Return an iterator for all the entries in the given file.
pub fn read_entries<R: BufRead>(reader: R) -> impl Iterator<Item = io::Result<Entry>> {
    EntryReader {
        reader,
        entry_bytes: Vec::new(),
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use ledger;
    use mint::Mint;
    use packet::BLOB_DATA_SIZE;
    use signature::{Keypair, KeypairUtil};
    use std::io::Cursor;
    use transaction::Transaction;

    #[test]
    fn test_dont_register_partial_entries() {
        let mint = Mint::new(1);
        let bank = Bank::new(&mint);

        let writer = io::sink();
        let mut entry_writer = EntryWriter::new(&bank, writer);
        let keypair = Keypair::new();
        let tx = Transaction::new(&mint.keypair(), keypair.pubkey(), 1, mint.last_id());

        // NOTE: if Entry grows to larger than a transaction, the code below falls over
        let threshold = (BLOB_DATA_SIZE / 256) - 1; // 256 is transaction size

        // Verify large entries are split up and the first sets has_more.
        let txs = vec![tx.clone(); threshold * 2];
        let entries = ledger::next_entries(&mint.last_id(), 0, txs);
        assert_eq!(entries.len(), 2);
        assert!(entries[0].has_more);
        assert!(!entries[1].has_more);

        // Verify that write_and_register_entry doesn't register the first entries after a split.
        assert_eq!(bank.last_id(), mint.last_id());
        entry_writer.write_and_register_entry(&entries[0]).unwrap();
        assert_eq!(bank.last_id(), mint.last_id());

        // Verify that write_and_register_entry registers the final entry after a split.
        entry_writer.write_and_register_entry(&entries[1]).unwrap();
        assert_eq!(bank.last_id(), entries[1].id);
    }

    /// Same as read_entries() but parsing a buffer and returning a vector.
    fn read_entries_from_buf(s: &[u8]) -> io::Result<Vec<Entry>> {
        let mut result = vec![];
        let reader = Cursor::new(s);
        for x in read_entries(reader) {
            trace!("entry... {:?}", x);
            result.push(x?);
        }
        Ok(result)
    }

    #[test]
    fn test_read_entries_from_buf() {
        let mint = Mint::new(1);
        let mut buf = vec![];
        EntryWriter::write_entries(&mut buf, mint.create_entries()).unwrap();
        let entries = read_entries_from_buf(&buf).unwrap();
        assert_eq!(entries, mint.create_entries());
    }
}