1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//! The ciphertext-ciphertext equality proof instruction.
//!
//! A ciphertext-ciphertext equality proof is defined with respect to two twisted ElGamal
//! ciphertexts. The proof certifies that the two ciphertexts encrypt the same message. To generate
//! the proof, a prover must provide the decryption key for the first ciphertext and the randomness
//! used to generate the second ciphertext.
//!
//! The first ciphertext associated with the proof is referred to as the "source" ciphertext. The
//! second ciphertext associated with the proof is referred to as the "destination" ciphertext.

#[cfg(not(target_os = "solana"))]
use {
    crate::{
        encryption::{
            elgamal::{ElGamalCiphertext, ElGamalKeypair, ElGamalPubkey},
            pedersen::PedersenOpening,
        },
        errors::{ProofGenerationError, ProofVerificationError},
        sigma_proofs::ciphertext_ciphertext_equality_proof::CiphertextCiphertextEqualityProof,
        transcript::TranscriptProtocol,
    },
    merlin::Transcript,
    std::convert::TryInto,
};
use {
    crate::{
        instruction::{ProofType, ZkProofData},
        zk_token_elgamal::pod,
    },
    bytemuck::{Pod, Zeroable},
};

/// The instruction data that is needed for the
/// `ProofInstruction::VerifyCiphertextCiphertextEquality` instruction.
///
/// It includes the cryptographic proof as well as the context data information needed to verify
/// the proof.
#[derive(Clone, Copy, Pod, Zeroable)]
#[repr(C)]
pub struct CiphertextCiphertextEqualityProofData {
    pub context: CiphertextCiphertextEqualityProofContext,

    pub proof: pod::CiphertextCiphertextEqualityProof,
}

/// The context data needed to verify a ciphertext-ciphertext equality proof.
#[derive(Clone, Copy, Pod, Zeroable)]
#[repr(C)]
pub struct CiphertextCiphertextEqualityProofContext {
    pub source_pubkey: pod::ElGamalPubkey, // 32 bytes

    pub destination_pubkey: pod::ElGamalPubkey, // 32 bytes

    pub source_ciphertext: pod::ElGamalCiphertext, // 64 bytes

    pub destination_ciphertext: pod::ElGamalCiphertext, // 64 bytes
}

#[cfg(not(target_os = "solana"))]
impl CiphertextCiphertextEqualityProofData {
    pub fn new(
        source_keypair: &ElGamalKeypair,
        destination_pubkey: &ElGamalPubkey,
        source_ciphertext: &ElGamalCiphertext,
        destination_ciphertext: &ElGamalCiphertext,
        destination_opening: &PedersenOpening,
        amount: u64,
    ) -> Result<Self, ProofGenerationError> {
        let pod_source_pubkey = pod::ElGamalPubkey(source_keypair.pubkey().to_bytes());
        let pod_destination_pubkey = pod::ElGamalPubkey(destination_pubkey.to_bytes());
        let pod_source_ciphertext = pod::ElGamalCiphertext(source_ciphertext.to_bytes());
        let pod_destination_ciphertext = pod::ElGamalCiphertext(destination_ciphertext.to_bytes());

        let context = CiphertextCiphertextEqualityProofContext {
            source_pubkey: pod_source_pubkey,
            destination_pubkey: pod_destination_pubkey,
            source_ciphertext: pod_source_ciphertext,
            destination_ciphertext: pod_destination_ciphertext,
        };

        let mut transcript = context.new_transcript();

        let proof = CiphertextCiphertextEqualityProof::new(
            source_keypair,
            destination_pubkey,
            source_ciphertext,
            destination_opening,
            amount,
            &mut transcript,
        )
        .into();

        Ok(Self { context, proof })
    }
}

impl ZkProofData<CiphertextCiphertextEqualityProofContext>
    for CiphertextCiphertextEqualityProofData
{
    const PROOF_TYPE: ProofType = ProofType::CiphertextCiphertextEquality;

    fn context_data(&self) -> &CiphertextCiphertextEqualityProofContext {
        &self.context
    }

    #[cfg(not(target_os = "solana"))]
    fn verify_proof(&self) -> Result<(), ProofVerificationError> {
        let mut transcript = self.context.new_transcript();

        let source_pubkey = self.context.source_pubkey.try_into()?;
        let destination_pubkey = self.context.destination_pubkey.try_into()?;
        let source_ciphertext = self.context.source_ciphertext.try_into()?;
        let destination_ciphertext = self.context.destination_ciphertext.try_into()?;
        let proof: CiphertextCiphertextEqualityProof = self.proof.try_into()?;

        proof
            .verify(
                &source_pubkey,
                &destination_pubkey,
                &source_ciphertext,
                &destination_ciphertext,
                &mut transcript,
            )
            .map_err(|e| e.into())
    }
}

#[allow(non_snake_case)]
#[cfg(not(target_os = "solana"))]
impl CiphertextCiphertextEqualityProofContext {
    fn new_transcript(&self) -> Transcript {
        let mut transcript = Transcript::new(b"CiphertextCiphertextEqualityProof");

        transcript.append_pubkey(b"source-pubkey", &self.source_pubkey);
        transcript.append_pubkey(b"destination-pubkey", &self.destination_pubkey);

        transcript.append_ciphertext(b"source-ciphertext", &self.source_ciphertext);
        transcript.append_ciphertext(b"destination-ciphertext", &self.destination_ciphertext);

        transcript
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_ciphertext_ciphertext_instruction_correctness() {
        let source_keypair = ElGamalKeypair::new_rand();
        let destination_keypair = ElGamalKeypair::new_rand();

        let amount: u64 = 0;
        let source_ciphertext = source_keypair.pubkey().encrypt(amount);

        let destination_opening = PedersenOpening::new_rand();
        let destination_ciphertext = destination_keypair
            .pubkey()
            .encrypt_with(amount, &destination_opening);

        let proof_data = CiphertextCiphertextEqualityProofData::new(
            &source_keypair,
            destination_keypair.pubkey(),
            &source_ciphertext,
            &destination_ciphertext,
            &destination_opening,
            amount,
        )
        .unwrap();

        assert!(proof_data.verify_proof().is_ok());

        let amount: u64 = 55;
        let source_ciphertext = source_keypair.pubkey().encrypt(amount);

        let destination_opening = PedersenOpening::new_rand();
        let destination_ciphertext = destination_keypair
            .pubkey()
            .encrypt_with(amount, &destination_opening);

        let proof_data = CiphertextCiphertextEqualityProofData::new(
            &source_keypair,
            destination_keypair.pubkey(),
            &source_ciphertext,
            &destination_ciphertext,
            &destination_opening,
            amount,
        )
        .unwrap();

        assert!(proof_data.verify_proof().is_ok());

        let amount = u64::max_value();
        let source_ciphertext = source_keypair.pubkey().encrypt(amount);

        let destination_opening = PedersenOpening::new_rand();
        let destination_ciphertext = destination_keypair
            .pubkey()
            .encrypt_with(amount, &destination_opening);

        let proof_data = CiphertextCiphertextEqualityProofData::new(
            &source_keypair,
            destination_keypair.pubkey(),
            &source_ciphertext,
            &destination_ciphertext,
            &destination_opening,
            amount,
        )
        .unwrap();

        assert!(proof_data.verify_proof().is_ok());
    }
}