1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
pub use crate::nonblocking::tpu_client::TpuSenderError;
use {
    crate::nonblocking::tpu_client::TpuClient as NonblockingTpuClient,
    rayon::iter::{IntoParallelIterator, ParallelIterator},
    solana_connection_cache::connection_cache::{
        ConnectionCache, ConnectionManager, ConnectionPool, NewConnectionConfig,
    },
    solana_rpc_client::rpc_client::RpcClient,
    solana_sdk::{clock::Slot, transaction::Transaction, transport::Result as TransportResult},
    std::{
        collections::VecDeque,
        net::UdpSocket,
        sync::{Arc, RwLock},
    },
};
#[cfg(feature = "spinner")]
use {
    solana_sdk::{message::Message, signers::Signers, transaction::TransactionError},
    tokio::time::Duration,
};

pub const DEFAULT_TPU_ENABLE_UDP: bool = false;
pub const DEFAULT_TPU_USE_QUIC: bool = true;
pub const DEFAULT_TPU_CONNECTION_POOL_SIZE: usize = 4;

pub type Result<T> = std::result::Result<T, TpuSenderError>;

/// Send at ~100 TPS
#[cfg(feature = "spinner")]
pub(crate) const SEND_TRANSACTION_INTERVAL: Duration = Duration::from_millis(10);
/// Retry batch send after 4 seconds
#[cfg(feature = "spinner")]
pub(crate) const TRANSACTION_RESEND_INTERVAL: Duration = Duration::from_secs(4);

/// Default number of slots used to build TPU socket fanout set
pub const DEFAULT_FANOUT_SLOTS: u64 = 12;

/// Maximum number of slots used to build TPU socket fanout set
pub const MAX_FANOUT_SLOTS: u64 = 100;

/// Config params for `TpuClient`
#[derive(Clone, Debug)]
pub struct TpuClientConfig {
    /// The range of upcoming slots to include when determining which
    /// leaders to send transactions to (min: 1, max: `MAX_FANOUT_SLOTS`)
    pub fanout_slots: u64,
}

impl Default for TpuClientConfig {
    fn default() -> Self {
        Self {
            fanout_slots: DEFAULT_FANOUT_SLOTS,
        }
    }
}

/// Client which sends transactions directly to the current leader's TPU port over UDP.
/// The client uses RPC to determine the current leader and fetch node contact info
pub struct TpuClient<
    P, // ConnectionPool
    M, // ConnectionManager
    C, // NewConnectionConfig
> {
    _deprecated: UdpSocket, // TpuClient now uses the connection_cache to choose a send_socket
    //todo: get rid of this field
    rpc_client: Arc<RpcClient>,
    tpu_client: Arc<NonblockingTpuClient<P, M, C>>,
}

impl<P, M, C> TpuClient<P, M, C>
where
    P: ConnectionPool<NewConnectionConfig = C>,
    M: ConnectionManager<ConnectionPool = P, NewConnectionConfig = C>,
    C: NewConnectionConfig,
{
    /// Serialize and send transaction to the current and upcoming leader TPUs according to fanout
    /// size
    pub fn send_transaction(&self, transaction: &Transaction) -> bool {
        self.invoke(self.tpu_client.send_transaction(transaction))
    }

    /// Send a wire transaction to the current and upcoming leader TPUs according to fanout size
    pub fn send_wire_transaction(&self, wire_transaction: Vec<u8>) -> bool {
        self.invoke(self.tpu_client.send_wire_transaction(wire_transaction))
    }

    /// Serialize and send transaction to the current and upcoming leader TPUs according to fanout
    /// size
    /// Returns the last error if all sends fail
    pub fn try_send_transaction(&self, transaction: &Transaction) -> TransportResult<()> {
        self.invoke(self.tpu_client.try_send_transaction(transaction))
    }

    /// Serialize and send a batch of transactions to the current and upcoming leader TPUs according
    /// to fanout size
    /// Returns the last error if all sends fail
    pub fn try_send_transaction_batch(&self, transactions: &[Transaction]) -> TransportResult<()> {
        let wire_transactions = transactions
            .into_par_iter()
            .map(|tx| bincode::serialize(&tx).expect("serialize Transaction in send_batch"))
            .collect::<Vec<_>>();
        self.invoke(
            self.tpu_client
                .try_send_wire_transaction_batch(wire_transactions),
        )
    }

    /// Send a wire transaction to the current and upcoming leader TPUs according to fanout size
    /// Returns the last error if all sends fail
    pub fn try_send_wire_transaction(&self, wire_transaction: Vec<u8>) -> TransportResult<()> {
        self.invoke(self.tpu_client.try_send_wire_transaction(wire_transaction))
    }

    /// Create a new client that disconnects when dropped
    pub fn new(
        name: &'static str,
        rpc_client: Arc<RpcClient>,
        websocket_url: &str,
        config: TpuClientConfig,
        connection_manager: M,
    ) -> Result<Self> {
        let create_tpu_client = NonblockingTpuClient::new(
            name,
            rpc_client.get_inner_client().clone(),
            websocket_url,
            config,
            connection_manager,
        );
        let tpu_client =
            tokio::task::block_in_place(|| rpc_client.runtime().block_on(create_tpu_client))?;

        Ok(Self {
            _deprecated: UdpSocket::bind("0.0.0.0:0").unwrap(),
            rpc_client,
            tpu_client: Arc::new(tpu_client),
        })
    }

    /// Create a new client that disconnects when dropped
    pub fn new_with_connection_cache(
        rpc_client: Arc<RpcClient>,
        websocket_url: &str,
        config: TpuClientConfig,
        connection_cache: Arc<ConnectionCache<P, M, C>>,
    ) -> Result<Self> {
        let create_tpu_client = NonblockingTpuClient::new_with_connection_cache(
            rpc_client.get_inner_client().clone(),
            websocket_url,
            config,
            connection_cache,
        );
        let tpu_client =
            tokio::task::block_in_place(|| rpc_client.runtime().block_on(create_tpu_client))?;

        Ok(Self {
            _deprecated: UdpSocket::bind("0.0.0.0:0").unwrap(),
            rpc_client,
            tpu_client: Arc::new(tpu_client),
        })
    }

    #[cfg(feature = "spinner")]
    pub fn send_and_confirm_messages_with_spinner<T: Signers + ?Sized>(
        &self,
        messages: &[Message],
        signers: &T,
    ) -> Result<Vec<Option<TransactionError>>> {
        self.invoke(
            self.tpu_client
                .send_and_confirm_messages_with_spinner(messages, signers),
        )
    }

    pub fn rpc_client(&self) -> &RpcClient {
        &self.rpc_client
    }

    fn invoke<T, F: std::future::Future<Output = T>>(&self, f: F) -> T {
        // `block_on()` panics if called within an asynchronous execution context. Whereas
        // `block_in_place()` only panics if called from a current_thread runtime, which is the
        // lesser evil.
        tokio::task::block_in_place(move || self.rpc_client.runtime().block_on(f))
    }
}

// 48 chosen because it's unlikely that 12 leaders in a row will miss their slots
const MAX_SLOT_SKIP_DISTANCE: u64 = 48;

#[derive(Clone, Debug)]
pub(crate) struct RecentLeaderSlots(Arc<RwLock<VecDeque<Slot>>>);
impl RecentLeaderSlots {
    pub(crate) fn new(current_slot: Slot) -> Self {
        let mut recent_slots = VecDeque::new();
        recent_slots.push_back(current_slot);
        Self(Arc::new(RwLock::new(recent_slots)))
    }

    pub(crate) fn record_slot(&self, current_slot: Slot) {
        let mut recent_slots = self.0.write().unwrap();
        recent_slots.push_back(current_slot);
        // 12 recent slots should be large enough to avoid a misbehaving
        // validator from affecting the median recent slot
        while recent_slots.len() > 12 {
            recent_slots.pop_front();
        }
    }

    // Estimate the current slot from recent slot notifications.
    pub(crate) fn estimated_current_slot(&self) -> Slot {
        let mut recent_slots: Vec<Slot> = self.0.read().unwrap().iter().cloned().collect();
        assert!(!recent_slots.is_empty());
        recent_slots.sort_unstable();

        // Validators can broadcast invalid blocks that are far in the future
        // so check if the current slot is in line with the recent progression.
        let max_index = recent_slots.len() - 1;
        let median_index = max_index / 2;
        let median_recent_slot = recent_slots[median_index];
        let expected_current_slot = median_recent_slot + (max_index - median_index) as u64;
        let max_reasonable_current_slot = expected_current_slot + MAX_SLOT_SKIP_DISTANCE;

        // Return the highest slot that doesn't exceed what we believe is a
        // reasonable slot.
        recent_slots
            .into_iter()
            .rev()
            .find(|slot| *slot <= max_reasonable_current_slot)
            .unwrap()
    }
}

#[cfg(test)]
impl From<Vec<Slot>> for RecentLeaderSlots {
    fn from(recent_slots: Vec<Slot>) -> Self {
        assert!(!recent_slots.is_empty());
        Self(Arc::new(RwLock::new(recent_slots.into_iter().collect())))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn assert_slot(recent_slots: RecentLeaderSlots, expected_slot: Slot) {
        assert_eq!(recent_slots.estimated_current_slot(), expected_slot);
    }

    #[test]
    fn test_recent_leader_slots() {
        assert_slot(RecentLeaderSlots::new(0), 0);

        let mut recent_slots: Vec<Slot> = (1..=12).collect();
        assert_slot(RecentLeaderSlots::from(recent_slots.clone()), 12);

        recent_slots.reverse();
        assert_slot(RecentLeaderSlots::from(recent_slots), 12);

        assert_slot(
            RecentLeaderSlots::from(vec![0, 1 + MAX_SLOT_SKIP_DISTANCE]),
            1 + MAX_SLOT_SKIP_DISTANCE,
        );
        assert_slot(
            RecentLeaderSlots::from(vec![0, 2 + MAX_SLOT_SKIP_DISTANCE]),
            0,
        );

        assert_slot(RecentLeaderSlots::from(vec![1]), 1);
        assert_slot(RecentLeaderSlots::from(vec![1, 100]), 1);
        assert_slot(RecentLeaderSlots::from(vec![1, 2, 100]), 2);
        assert_slot(RecentLeaderSlots::from(vec![1, 2, 3, 100]), 3);
        assert_slot(RecentLeaderSlots::from(vec![1, 2, 3, 99, 100]), 3);
    }
}