1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use {
    crate::accounts_db::SnapshotStorage, log::*, solana_measure::measure::Measure,
    solana_sdk::clock::Slot, std::ops::Range,
};

pub struct SortedStorages<'a> {
    range: Range<Slot>,
    storages: Vec<Option<&'a SnapshotStorage>>,
    slot_count: usize,
    storage_count: usize,
}

impl<'a> SortedStorages<'a> {
    pub fn get(&self, slot: Slot) -> Option<&SnapshotStorage> {
        if !self.range.contains(&slot) {
            None
        } else {
            let index = (slot - self.range.start) as usize;
            self.storages[index]
        }
    }

    pub fn range_width(&self) -> Slot {
        self.range.end - self.range.start
    }

    pub fn range(&self) -> &Range<Slot> {
        &self.range
    }

    pub fn slot_count(&self) -> usize {
        self.slot_count
    }

    pub fn storage_count(&self) -> usize {
        self.storage_count
    }

    // assumptions:
    // 1. each SnapshotStorage.!is_empty()
    // 2. SnapshotStorage.first().unwrap().get_slot() is unique from all other SnapshotStorage items.
    pub fn new(source: &'a [SnapshotStorage]) -> Self {
        let slots = source
            .iter()
            .map(|storages| {
                let first = storages.first();
                assert!(first.is_some(), "SnapshotStorage.is_empty()");
                let storage = first.unwrap();
                storage.slot() // this must be unique. Will be enforced in new_with_slots
            })
            .collect::<Vec<_>>();
        Self::new_with_slots(source.iter().zip(slots.iter()), None, None)
    }

    // source[i] is in slot slots[i]
    // assumptions:
    // 1. slots vector contains unique slot #s.
    // 2. slots and source are the same len
    pub fn new_with_slots<'b>(
        source: impl Iterator<Item = (&'a SnapshotStorage, &'b Slot)> + Clone,
        // A slot used as a lower bound, but potentially smaller than the smallest slot in the given 'source' iterator
        min_slot: Option<Slot>,
        // highest valid slot. Only matters if source array does not contain a slot >= max_slot_inclusive.
        // An example is a slot that has accounts in the write cache at slots <= 'max_slot_inclusive' but no storages at those slots.
        // None => self.range.end = source.1.max() + 1
        // Some(slot) => self.range.end = std::cmp::max(slot, source.1.max())
        max_slot_inclusive: Option<Slot>,
    ) -> Self {
        let mut min = Slot::MAX;
        let mut max = Slot::MIN;
        let mut adjust_min_max = |slot| {
            min = std::cmp::min(slot, min);
            max = std::cmp::max(slot + 1, max);
        };
        // none, either, or both of min/max could be specified
        if let Some(slot) = min_slot {
            adjust_min_max(slot);
        }
        if let Some(slot) = max_slot_inclusive {
            adjust_min_max(slot);
        }

        let mut slot_count = 0;
        let mut time = Measure::start("get slot");
        let source_ = source.clone();
        let mut storage_count = 0;
        source_.for_each(|(storages, slot)| {
            storage_count += storages.len();
            slot_count += 1;
            adjust_min_max(*slot);
        });
        time.stop();
        let mut time2 = Measure::start("sort");
        let range;
        let mut storages;
        if min > max {
            range = Range::default();
            storages = vec![];
        } else {
            range = Range {
                start: min,
                end: max,
            };
            let len = max - min;
            storages = vec![None; len as usize];
            source.for_each(|(original_storages, slot)| {
                let index = (slot - min) as usize;
                assert!(storages[index].is_none(), "slots are not unique"); // we should not encounter the same slot twice
                storages[index] = Some(original_storages);
            });
        }
        time2.stop();
        debug!("SortedStorages, times: {}, {}", time.as_us(), time2.as_us());
        Self {
            range,
            storages,
            slot_count,
            storage_count,
        }
    }
}

#[cfg(test)]
pub mod tests {
    use super::*;
    impl<'a> SortedStorages<'a> {
        pub fn new_debug(source: &[(&'a SnapshotStorage, Slot)], min: Slot, len: usize) -> Self {
            let mut storages = vec![None; len];
            let range = Range {
                start: min,
                end: min + len as Slot,
            };
            let slot_count = source.len();
            for (storage, slot) in source {
                storages[*slot as usize] = Some(*storage);
            }

            Self {
                range,
                storages,
                slot_count,
                storage_count: 0,
            }
        }
    }

    #[test]
    #[should_panic(expected = "SnapshotStorage.is_empty()")]
    fn test_sorted_storages_empty() {
        SortedStorages::new(&[Vec::new()]);
    }

    #[test]
    #[should_panic(expected = "slots are not unique")]
    fn test_sorted_storages_duplicate_slots() {
        SortedStorages::new_with_slots(
            [Vec::new(), Vec::new()].iter().zip([0, 0].iter()),
            None,
            None,
        );
    }

    #[test]
    fn test_sorted_storages_none() {
        let result = SortedStorages::new_with_slots([].iter().zip([].iter()), None, None);
        assert_eq!(result.range, Range::default());
        assert_eq!(result.slot_count, 0);
        assert_eq!(result.storages.len(), 0);
        assert!(result.get(0).is_none());
    }

    #[test]
    fn test_sorted_storages_1() {
        let vec = vec![];
        let vec_check = vec.clone();
        let slot = 4;
        let vecs = [vec];
        let result = SortedStorages::new_with_slots(vecs.iter().zip([slot].iter()), None, None);
        assert_eq!(
            result.range,
            Range {
                start: slot,
                end: slot + 1
            }
        );
        assert_eq!(result.slot_count, 1);
        assert_eq!(result.storages.len(), 1);
        assert_eq!(result.get(slot).unwrap().len(), vec_check.len());
    }

    #[test]
    fn test_sorted_storages_2() {
        let vec = vec![];
        let vec_check = vec.clone();
        let slots = [4, 7];
        let vecs = [vec.clone(), vec];
        let result = SortedStorages::new_with_slots(vecs.iter().zip(slots.iter()), None, None);
        assert_eq!(
            result.range,
            Range {
                start: slots[0],
                end: slots[1] + 1,
            }
        );
        assert_eq!(result.slot_count, 2);
        assert_eq!(result.storages.len() as Slot, slots[1] - slots[0] + 1);
        assert!(result.get(0).is_none());
        assert!(result.get(3).is_none());
        assert!(result.get(5).is_none());
        assert!(result.get(6).is_none());
        assert!(result.get(8).is_none());
        assert_eq!(result.get(slots[0]).unwrap().len(), vec_check.len());
        assert_eq!(result.get(slots[1]).unwrap().len(), vec_check.len());
    }
}