1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
use {
    crate::{
        duplicate_shred::{self, DuplicateShred, Error},
        duplicate_shred_listener::DuplicateShredHandlerTrait,
    },
    log::error,
    solana_ledger::{blockstore::Blockstore, leader_schedule_cache::LeaderScheduleCache},
    solana_runtime::bank_forks::BankForks,
    solana_sdk::{
        clock::{Epoch, Slot},
        pubkey::Pubkey,
    },
    std::{
        cmp::Reverse,
        collections::HashMap,
        sync::{Arc, RwLock},
    },
};

// Normally num_chunks is 3, because there are two shreds (each is one packet)
// and meta data. So we discard anything larger than 3 chunks.
const MAX_NUM_CHUNKS: usize = 3;
// Limit number of entries per node.
const MAX_NUM_ENTRIES_PER_PUBKEY: usize = 128;
const BUFFER_CAPACITY: usize = 512 * MAX_NUM_ENTRIES_PER_PUBKEY;

type BufferEntry = [Option<DuplicateShred>; MAX_NUM_CHUNKS];

pub struct DuplicateShredHandler {
    // Because we use UDP for packet transfer, we can normally only send ~1500 bytes
    // in each packet. We send both shreds and meta data in duplicate shred proof, and
    // each shred is normally 1 packet(1500 bytes), so the whole proof is larger than
    // 1 packet and it needs to be cut down as chunks for transfer. So we need to piece
    // together the chunks into the original proof before anything useful is done.
    buffer: HashMap<(Slot, Pubkey), BufferEntry>,
    // Slots for which a duplicate proof is already ingested.
    consumed: HashMap<Slot, bool>,
    // Cache last root to reduce read lock.
    last_root: Slot,
    blockstore: Arc<Blockstore>,
    leader_schedule_cache: Arc<LeaderScheduleCache>,
    bank_forks: Arc<RwLock<BankForks>>,
    // Cache information from root bank so we could function correctly without reading roots.
    cached_on_epoch: Epoch,
    cached_staked_nodes: Arc<HashMap<Pubkey, u64>>,
    cached_slots_in_epoch: u64,
}

impl DuplicateShredHandlerTrait for DuplicateShredHandler {
    // Here we are sending data one by one rather than in a batch because in the future
    // we may send different type of CrdsData to different senders.
    fn handle(&mut self, shred_data: DuplicateShred) {
        self.cache_root_info();
        self.maybe_prune_buffer();
        if let Err(error) = self.handle_shred_data(shred_data) {
            error!("handle packet: {error:?}")
        }
    }
}

impl DuplicateShredHandler {
    pub fn new(
        blockstore: Arc<Blockstore>,
        leader_schedule_cache: Arc<LeaderScheduleCache>,
        bank_forks: Arc<RwLock<BankForks>>,
    ) -> Self {
        Self {
            buffer: HashMap::<(Slot, Pubkey), BufferEntry>::default(),
            consumed: HashMap::<Slot, bool>::default(),
            last_root: 0,
            cached_on_epoch: 0,
            cached_staked_nodes: Arc::new(HashMap::new()),
            cached_slots_in_epoch: 0,
            blockstore,
            leader_schedule_cache,
            bank_forks,
        }
    }

    fn cache_root_info(&mut self) {
        let last_root = self.blockstore.last_root();
        if last_root == self.last_root && !self.cached_staked_nodes.is_empty() {
            return;
        }
        self.last_root = last_root;
        if let Ok(bank_fork) = self.bank_forks.try_read() {
            let root_bank = bank_fork.root_bank();
            let epoch_info = root_bank.get_epoch_info();
            if self.cached_staked_nodes.is_empty() || self.cached_on_epoch < epoch_info.epoch {
                self.cached_on_epoch = epoch_info.epoch;
                if let Some(cached_staked_nodes) = root_bank.epoch_staked_nodes(epoch_info.epoch) {
                    self.cached_staked_nodes = cached_staked_nodes;
                }
                self.cached_slots_in_epoch = epoch_info.slots_in_epoch;
            }
        }
    }

    fn handle_shred_data(&mut self, chunk: DuplicateShred) -> Result<(), Error> {
        if !self.should_consume_slot(chunk.slot) {
            return Ok(());
        }
        let slot = chunk.slot;
        let num_chunks = chunk.num_chunks();
        let chunk_index = chunk.chunk_index();
        if usize::from(num_chunks) > MAX_NUM_CHUNKS || chunk_index >= num_chunks {
            return Err(Error::InvalidChunkIndex {
                chunk_index,
                num_chunks,
            });
        }
        let entry = self.buffer.entry((chunk.slot, chunk.from)).or_default();
        *entry
            .get_mut(usize::from(chunk_index))
            .ok_or(Error::InvalidChunkIndex {
                chunk_index,
                num_chunks,
            })? = Some(chunk);
        // If all chunks are already received, reconstruct and store
        // the duplicate slot proof in blockstore
        if entry.iter().flatten().count() == usize::from(num_chunks) {
            let chunks = std::mem::take(entry).into_iter().flatten();
            let pubkey = self
                .leader_schedule_cache
                .slot_leader_at(slot, /*bank:*/ None)
                .ok_or(Error::UnknownSlotLeader(slot))?;
            let (shred1, shred2) = duplicate_shred::into_shreds(&pubkey, chunks)?;
            if !self.blockstore.has_duplicate_shreds_in_slot(slot) {
                self.blockstore.store_duplicate_slot(
                    slot,
                    shred1.into_payload(),
                    shred2.into_payload(),
                )?;
            }
            self.consumed.insert(slot, true);
        }
        Ok(())
    }

    fn should_consume_slot(&mut self, slot: Slot) -> bool {
        slot > self.last_root
            && slot < self.last_root.saturating_add(self.cached_slots_in_epoch)
            && should_consume_slot(slot, &self.blockstore, &mut self.consumed)
    }

    fn maybe_prune_buffer(&mut self) {
        // The buffer is allowed to grow to twice the intended capacity, at
        // which point the extraneous entries are removed in linear time,
        // resulting an amortized O(1) performance.
        if self.buffer.len() < BUFFER_CAPACITY.saturating_mul(2) {
            return;
        }
        self.consumed.retain(|&slot, _| slot > self.last_root);
        // Filter out obsolete slots and limit number of entries per pubkey.
        {
            let mut counts = HashMap::<Pubkey, usize>::new();
            self.buffer.retain(|(slot, pubkey), _| {
                *slot > self.last_root
                    && should_consume_slot(*slot, &self.blockstore, &mut self.consumed)
                    && {
                        let count = counts.entry(*pubkey).or_default();
                        *count = count.saturating_add(1);
                        *count <= MAX_NUM_ENTRIES_PER_PUBKEY
                    }
            });
        }
        if self.buffer.len() < BUFFER_CAPACITY {
            return;
        }
        // Lookup stake for each entry.
        let mut buffer: Vec<_> = self
            .buffer
            .drain()
            .map(|entry @ ((_, pubkey), _)| {
                let stake = self
                    .cached_staked_nodes
                    .get(&pubkey)
                    .copied()
                    .unwrap_or_default();
                (stake, entry)
            })
            .collect();
        // Drop entries with lowest stake and rebuffer remaining ones.
        buffer.select_nth_unstable_by_key(BUFFER_CAPACITY, |&(stake, _)| Reverse(stake));
        self.buffer.extend(
            buffer
                .into_iter()
                .take(BUFFER_CAPACITY)
                .map(|(_, entry)| entry),
        );
    }
}

// Returns false if a duplicate proof is already ingested for the slot,
// and updates local `consumed` cache with blockstore.
fn should_consume_slot(
    slot: Slot,
    blockstore: &Blockstore,
    consumed: &mut HashMap<Slot, bool>,
) -> bool {
    !*consumed
        .entry(slot)
        .or_insert_with(|| blockstore.has_duplicate_shreds_in_slot(slot))
}

#[cfg(test)]
mod tests {
    use {
        super::*,
        crate::{
            cluster_info::DUPLICATE_SHRED_MAX_PAYLOAD_SIZE,
            duplicate_shred::{from_shred, tests::new_rand_shred},
        },
        solana_ledger::{
            genesis_utils::{create_genesis_config_with_leader, GenesisConfigInfo},
            get_tmp_ledger_path_auto_delete,
            shred::Shredder,
        },
        solana_runtime::bank::Bank,
        solana_sdk::{
            signature::{Keypair, Signer},
            timing::timestamp,
        },
    };

    fn create_duplicate_proof(
        keypair: Arc<Keypair>,
        sender_pubkey: Option<Pubkey>,
        slot: u64,
        expected_error: Option<Error>,
        chunk_size: usize,
    ) -> Result<impl Iterator<Item = DuplicateShred>, Error> {
        let my_keypair = match expected_error {
            Some(Error::InvalidSignature) => Arc::new(Keypair::new()),
            _ => keypair,
        };
        let mut rng = rand::thread_rng();
        let shredder = Shredder::new(slot, slot - 1, 0, 0).unwrap();
        let next_shred_index = 353;
        let shred1 = new_rand_shred(&mut rng, next_shred_index, &shredder, &my_keypair);
        let shredder1 = Shredder::new(slot + 1, slot, 0, 0).unwrap();
        let shred2 = match expected_error {
            Some(Error::SlotMismatch) => {
                new_rand_shred(&mut rng, next_shred_index, &shredder1, &my_keypair)
            }
            Some(Error::ShredIndexMismatch) => {
                new_rand_shred(&mut rng, next_shred_index + 1, &shredder, &my_keypair)
            }
            Some(Error::InvalidDuplicateShreds) => shred1.clone(),
            _ => new_rand_shred(&mut rng, next_shred_index, &shredder, &my_keypair),
        };
        let sender = match sender_pubkey {
            Some(pubkey) => pubkey,
            None => my_keypair.pubkey(),
        };
        let chunks = from_shred(
            shred1,
            sender,
            shred2.payload().clone(),
            None::<fn(Slot) -> Option<Pubkey>>,
            timestamp(), // wallclock
            chunk_size,  // max_size
        )?;
        Ok(chunks)
    }

    #[test]
    fn test_handle_mixed_entries() {
        solana_logger::setup();

        let ledger_path = get_tmp_ledger_path_auto_delete!();
        let blockstore = Arc::new(Blockstore::open(ledger_path.path()).unwrap());
        let my_keypair = Arc::new(Keypair::new());
        let my_pubkey = my_keypair.pubkey();
        let genesis_config_info = create_genesis_config_with_leader(10_000, &my_pubkey, 10_000);
        let GenesisConfigInfo { genesis_config, .. } = genesis_config_info;
        let bank_forks = BankForks::new(Bank::new_for_tests(&genesis_config));
        let leader_schedule_cache = Arc::new(LeaderScheduleCache::new_from_bank(
            &bank_forks.working_bank(),
        ));
        let mut duplicate_shred_handler = DuplicateShredHandler::new(
            blockstore.clone(),
            leader_schedule_cache,
            Arc::new(RwLock::new(bank_forks)),
        );
        let chunks = create_duplicate_proof(
            my_keypair.clone(),
            None,
            1,
            None,
            DUPLICATE_SHRED_MAX_PAYLOAD_SIZE,
        )
        .unwrap();
        let chunks1 = create_duplicate_proof(
            my_keypair.clone(),
            None,
            2,
            None,
            DUPLICATE_SHRED_MAX_PAYLOAD_SIZE,
        )
        .unwrap();
        assert!(!blockstore.has_duplicate_shreds_in_slot(1));
        assert!(!blockstore.has_duplicate_shreds_in_slot(2));
        // Test that two proofs are mixed together, but we can store the proofs fine.
        for (chunk1, chunk2) in chunks.zip(chunks1) {
            duplicate_shred_handler.handle(chunk1);
            duplicate_shred_handler.handle(chunk2);
        }
        assert!(blockstore.has_duplicate_shreds_in_slot(1));
        assert!(blockstore.has_duplicate_shreds_in_slot(2));

        // Test all kinds of bad proofs.
        for error in [
            Error::InvalidSignature,
            Error::SlotMismatch,
            Error::ShredIndexMismatch,
            Error::InvalidDuplicateShreds,
        ] {
            match create_duplicate_proof(
                my_keypair.clone(),
                None,
                3,
                Some(error),
                DUPLICATE_SHRED_MAX_PAYLOAD_SIZE,
            ) {
                Err(_) => (),
                Ok(chunks) => {
                    for chunk in chunks {
                        duplicate_shred_handler.handle(chunk);
                    }
                    assert!(!blockstore.has_duplicate_shreds_in_slot(3));
                }
            }
        }
    }

    #[test]
    fn test_reject_abuses() {
        solana_logger::setup();

        let ledger_path = get_tmp_ledger_path_auto_delete!();
        let blockstore = Arc::new(Blockstore::open(ledger_path.path()).unwrap());
        let my_keypair = Arc::new(Keypair::new());
        let my_pubkey = my_keypair.pubkey();
        let genesis_config_info = create_genesis_config_with_leader(10_000, &my_pubkey, 10_000);
        let GenesisConfigInfo { genesis_config, .. } = genesis_config_info;
        let bank_forks = BankForks::new(Bank::new_for_tests(&genesis_config));
        let leader_schedule_cache = Arc::new(LeaderScheduleCache::new_from_bank(
            &bank_forks.working_bank(),
        ));
        let bank_forks_ptr = Arc::new(RwLock::new(bank_forks));
        let mut duplicate_shred_handler =
            DuplicateShredHandler::new(blockstore.clone(), leader_schedule_cache, bank_forks_ptr);
        let start_slot: Slot = 1;

        // This proof will not be accepted because num_chunks is too large.
        let chunks = create_duplicate_proof(
            my_keypair.clone(),
            None,
            start_slot,
            None,
            DUPLICATE_SHRED_MAX_PAYLOAD_SIZE / 2,
        )
        .unwrap();
        for chunk in chunks {
            duplicate_shred_handler.handle(chunk);
        }
        assert!(!blockstore.has_duplicate_shreds_in_slot(start_slot));

        // This proof will be rejected because the slot is too far away in the future.
        let future_slot =
            blockstore.last_root() + duplicate_shred_handler.cached_slots_in_epoch + start_slot;
        let chunks = create_duplicate_proof(
            my_keypair.clone(),
            None,
            future_slot,
            None,
            DUPLICATE_SHRED_MAX_PAYLOAD_SIZE,
        )
        .unwrap();
        for chunk in chunks {
            duplicate_shred_handler.handle(chunk);
        }
        assert!(!blockstore.has_duplicate_shreds_in_slot(future_slot));

        // Send in two proofs, the first proof showing up will be accepted, the following
        // proofs will be discarded.
        let mut chunks = create_duplicate_proof(
            my_keypair,
            None,
            start_slot,
            None,
            DUPLICATE_SHRED_MAX_PAYLOAD_SIZE,
        )
        .unwrap();
        // handle chunk 0 of the first proof.
        duplicate_shred_handler.handle(chunks.next().unwrap());
        assert!(!blockstore.has_duplicate_shreds_in_slot(start_slot));
        // Now send in the rest of the first proof, it will succeed.
        for chunk in chunks {
            duplicate_shred_handler.handle(chunk);
        }
        assert!(blockstore.has_duplicate_shreds_in_slot(start_slot));
    }
}