1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use super::Q32E2;
use crate::u32_with_sign;
use crate::PxE2;
use crate::P32E2;

impl From<P32E2> for Q32E2 {
    #[inline]
    fn from(a: P32E2) -> Self {
        let mut q = Self::ZERO;
        q += (a, P32E2::ONE);
        q
    }
}

impl<const N: u32> From<PxE2<{ N }>> for Q32E2 {
    #[inline]
    fn from(a: PxE2<{ N }>) -> Self {
        let mut q = Self::ZERO;
        q += (a, PxE2::ONE);
        q
    }
}

impl From<Q32E2> for P32E2 {
    #[inline]
    fn from(q_a: Q32E2) -> Self {
        (&q_a).into()
    }
}

impl From<&Q32E2> for P32E2 {
    #[inline]
    fn from(q_a: &Q32E2) -> Self {
        q_a.to_posit()
    }
}

impl Q32E2 {
    pub fn to_posit(&self) -> P32E2 {
        let mut bits_more = false;
        let mut frac64_a = 0_u64;

        if self.is_zero() {
            return P32E2::ZERO;
        } else if self.is_nar() {
            return P32E2::NAR;
        }

        let mut u_z = self.to_bits();

        let sign = (u_z[0] & 0x_8000_0000_0000_0000) != 0;

        if sign {
            let mut j = u_z.iter_mut().rev();
            while let Some(u) = j.next() {
                if *u > 0 {
                    *u = u.wrapping_neg();
                    for w in j {
                        *w = !*w;
                    }
                    break;
                }
            }
        }
        //minpos and maxpos

        let mut no_lz = 0_isize;

        let mut j = u_z.iter_mut().enumerate();
        while let Some((i, u)) = j.next() {
            if *u == 0 {
                no_lz += 64;
            } else {
                let mut tmp = *u;
                let mut no_lztmp = 0_isize;

                while (tmp >> 63) == 0 {
                    no_lztmp += 1;
                    tmp <<= 1;
                }

                no_lz += no_lztmp;
                frac64_a = tmp;
                if (i != 7) && (no_lztmp != 0) {
                    let (_, w) = j.next().unwrap();
                    frac64_a += *w >> (64 - no_lztmp);
                    if (*w & ((0x1_u64 << (64 - no_lztmp)) - 1)) != 0 {
                        bits_more = true;
                    }
                }
                for (_, w) in j {
                    if *w > 0 {
                        bits_more = true;
                        break;
                    }
                }
                break;
            }
        }

        //default dot is between bit 271 and 272, extreme left bit is bit 0. Last right bit is bit 511.
        //Equations derived from quire32_mult  last_pos = 271 - (k_a<<2) - exp_a and first_pos = last_pos - frac_len
        let k_a = ((271 - no_lz) >> 2) as i8;
        let mut exp_a = 271 - (no_lz as i32) - ((k_a << 2) as i32);

        let (regime, reg_sa, reg_a) = P32E2::calculate_regime(k_a);

        let u_a = if reg_a > 30 {
            //max or min pos. exp and frac does not matter.
            if reg_sa {
                0x7FFF_FFFF
            } else {
                0x1
            }
        } else {
            //remove hidden bit
            frac64_a &= 0x7FFF_FFFF_FFFF_FFFF;

            let shift = reg_a + 35; //2 es bit, 1 sign bit and 1 r terminating bit , 31+4

            let mut frac_a = frac64_a.checked_shr(shift as u32).unwrap_or(0) as u32;
            let mut bit_n_plus_one = false;
            if reg_a <= 28 {
                bit_n_plus_one = ((frac64_a >> (shift - 1)) & 0x1) != 0;
                exp_a <<= 28 - reg_a;
                if (frac64_a << (65 - shift)) != 0 {
                    bits_more = true;
                }
            } else {
                if reg_a == 30 {
                    bit_n_plus_one = (exp_a & 0x2) != 0;
                    bits_more = (exp_a & 0x1) != 0;
                    exp_a = 0;
                } else if reg_a == 29 {
                    bit_n_plus_one = (exp_a & 0x1) != 0;
                    exp_a >>= 1; //taken care of by the pack algo
                }
                if frac64_a > 0 {
                    frac_a = 0;
                    bits_more = true;
                }
            }

            let mut u_a = P32E2::pack_to_ui(regime, exp_a as u32, frac_a);
            if bit_n_plus_one {
                u_a += (u_a & 1) | (bits_more as u32);
            }
            u_a
        };
        P32E2::from_bits(u32_with_sign(u_a, sign))
    }
}

impl<const N: u32> From<Q32E2> for PxE2<{ N }> {
    #[inline]
    fn from(q_a: Q32E2) -> Self {
        (&q_a).into()
    }
}

impl<const N: u32> From<&Q32E2> for PxE2<{ N }> {
    fn from(q_a: &Q32E2) -> Self {
        let mut bits_more = false;
        let mut frac64_a = 0_u64;

        if q_a.is_zero() {
            return Self::ZERO;
        } else if q_a.is_nar() {
            return Self::NAR;
        }

        let mut u_z = q_a.to_bits();

        let sign = (u_z[0] & 0x_8000_0000_0000_0000) != 0;

        if sign {
            let mut j = u_z.iter_mut().rev();
            while let Some(u) = j.next() {
                if *u > 0 {
                    *u = u.wrapping_neg();
                    for w in j {
                        *w = !*w;
                    }
                    break;
                }
            }
        }
        //minpos and maxpos

        let mut no_lz = 0_isize;

        let mut j = u_z.iter_mut().enumerate();
        while let Some((i, u)) = j.next() {
            if *u == 0 {
                no_lz += 64;
            } else {
                let mut tmp = *u;
                let mut no_lztmp = 0_isize;

                while (tmp >> 63) == 0 {
                    no_lztmp += 1;
                    tmp <<= 1;
                }

                no_lz += no_lztmp;
                frac64_a = tmp;
                if (i != 7) && (no_lztmp != 0) {
                    let (_, w) = j.next().unwrap();
                    frac64_a += *w >> (64 - no_lztmp);
                    if (*w & ((0x1_u64 << (64 - no_lztmp)) - 1)) != 0 {
                        bits_more = true;
                    }
                }
                for (_, w) in j {
                    if *w > 0 {
                        bits_more = true;
                        break;
                    }
                }
                break;
            }
        }

        //default dot is between bit 271 and 272, extreme left bit is bit 0. Last right bit is bit 511.
        //Equations derived from quire32_mult  last_pos = 271 - (k_a<<2) - exp_a and first_pos = last_pos - frac_len
        let k_a = ((271 - no_lz) >> 2) as i8;
        let mut exp_a = 271 - (no_lz as i32) - ((k_a << 2) as i32);

        let (mut regime, reg_sa, reg_a) = Self::calculate_regime(k_a);

        let u_a = if reg_a > (N - 2) {
            //max or min pos. exp and frac does not matter.
            if reg_sa {
                0x_7FFF_FFFF & Self::mask()
            } else {
                0x1 << (32 - N)
            }
        } else {
            //remove hidden bit
            frac64_a &= 0x_7FFF_FFFF_FFFF_FFFF;

            let shift = reg_a + 35; //2 es bit, 1 sign bit and 1 r terminating bit , 31+4
            let mut frac_a = (frac64_a >> shift) as u32;

            //regime length is smaller than length of posit
            let mut bit_n_plus_one = false;
            if reg_a < N {
                if reg_a <= (N - 4) {
                    bit_n_plus_one = ((frac64_a >> (shift + 31 - N)) & 0x1) != 0;
                    if (frac64_a << (33 - shift + N)) != 0 {
                        bits_more = true;
                    }
                } else {
                    if reg_a == (N - 2) {
                        bit_n_plus_one = (exp_a & 0x2) != 0;
                        exp_a = 0;
                    } else if reg_a == (N - 3) {
                        bit_n_plus_one = (exp_a & 0x1) != 0;
                        //exp_a>>=1;
                        exp_a &= 0x2;
                    }
                    if frac64_a > 0 {
                        frac_a = 0;
                    }
                }
            } else {
                regime = if reg_sa {
                    regime & Self::mask()
                } else {
                    regime << (32 - N)
                };
                exp_a = 0;
                frac_a = 0;
            }

            exp_a <<= 28 - reg_a;
            let mut u_a = Self::pack_to_ui(regime, exp_a as u32, frac_a) & Self::mask();

            if bit_n_plus_one {
                u_a += (((u_a >> (32 - N)) & 0x1) | (bits_more as u32)) << (32 - N);
            }
            u_a
        };
        Self::from_bits(u32_with_sign(u_a, sign))
    }
}