1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
use super::P32E2;
use crate::{u32_with_sign, MulAddType};

impl P32E2 {
    #[inline]
    pub const fn mul_add(self, b: Self, c: Self) -> Self {
        let ui_a = self.to_bits();
        let ui_b = b.to_bits();
        let ui_c = c.to_bits();
        mul_add(ui_a, ui_b, ui_c, crate::MulAddType::Add)
    }
    #[inline]
    pub const fn mul_sub(self, b: Self, c: Self) -> Self {
        let ui_a = self.to_bits();
        let ui_b = b.to_bits();
        let ui_c = c.to_bits();
        mul_add(ui_a, ui_b, ui_c, crate::MulAddType::SubC)
    }
    #[inline]
    pub const fn sub_product(self, a: Self, b: Self) -> Self {
        let ui_a = a.to_bits();
        let ui_b = b.to_bits();
        let ui_c = self.to_bits();
        mul_add(ui_a, ui_b, ui_c, crate::MulAddType::SubProd)
    }
}

#[allow(clippy::cognitive_complexity)]
const fn mul_add(mut ui_a: u32, mut ui_b: u32, mut ui_c: u32, op: MulAddType) -> P32E2 {
    let mut bits_more = false;
    //NaR
    if (ui_a == 0x8000_0000) || (ui_b == 0x8000_0000) || (ui_c == 0x8000_0000) {
        return P32E2::NAR;
    } else if (ui_a == 0) || (ui_b == 0) {
        return match op {
            MulAddType::SubC => P32E2::from_bits(ui_c.wrapping_neg()),
            _ => P32E2::from_bits(ui_c),
        };
    }

    let sign_a = P32E2::sign_ui(ui_a);
    let sign_b = P32E2::sign_ui(ui_b);
    let sign_c = P32E2::sign_ui(ui_c); //^ (op == softposit_mulAdd_subC);
    let mut sign_z = sign_a ^ sign_b; // ^ (op == softposit_mulAdd_subProd);

    if sign_a {
        ui_a = ui_a.wrapping_neg();
    }
    if sign_b {
        ui_b = ui_b.wrapping_neg();
    }
    if sign_c {
        ui_c = ui_c.wrapping_neg();
    }

    let (mut k_a, tmp) = P32E2::separate_bits_tmp(ui_a);
    let mut exp_a = (tmp >> 29) as i32; //to get 2 bits
    let frac_a = (tmp << 2) | 0x8000_0000;

    let (k_b, tmp) = P32E2::separate_bits_tmp(ui_b);
    k_a += k_b;
    exp_a += (tmp >> 29) as i32;
    let mut frac64_z = (frac_a as u64) * (((tmp << 2) | 0x8000_0000) as u64);

    if exp_a > 3 {
        k_a += 1;
        exp_a &= 0x3; // -=4
    }

    let rcarry = (frac64_z & 0x_8000_0000_0000_0000) != 0; //1st bit of frac64_z
    if rcarry {
        exp_a += 1;
        if exp_a > 3 {
            k_a += 1;
            exp_a &= 0x3;
        }
        frac64_z >>= 1;
    }

    let mut k_z;
    let mut exp_z: i32;
    if ui_c != 0 {
        let (k_c, exp_c, frac_c) = P32E2::separate_bits(ui_c);
        let mut frac64_c = (frac_c as u64) << 32;
        let mut shift_right = (((k_a - k_c) as i16) << 2) + (exp_a - exp_c) as i16;

        exp_z = if shift_right < 0 {
            // |ui_c| > |Prod|
            if shift_right <= -63 {
                bits_more = true;
                frac64_z = 0;
                shift_right = 0;
            //set bits_more to one?
            } else if (frac64_z << (64 + shift_right)) != 0 {
                bits_more = true;
            }
            if sign_z == sign_c {
                frac64_z = frac64_c + (frac64_z >> -shift_right);
            } else {
                //different signs
                frac64_z = frac64_c - (frac64_z >> -shift_right);
                sign_z = sign_c;
                if bits_more {
                    frac64_z -= 1;
                }
            }
            k_z = k_c;
            exp_c
        } else if shift_right > 0 {
            // |ui_c| < |Prod|
            //if frac32C&((1<<shift_right)-1) {bits_more = true;}
            if shift_right >= 63 {
                bits_more = true;
                frac64_c = 0;
                shift_right = 0;
            } else if (frac64_c << (64 - shift_right)) != 0 {
                bits_more = true;
            }
            if sign_z == sign_c {
                frac64_z += frac64_c >> shift_right;
            } else {
                frac64_z -= frac64_c >> shift_right;
                if bits_more {
                    frac64_z -= 1;
                }
            }
            k_z = k_a;
            exp_a
        } else {
            if (frac64_c == frac64_z) && (sign_z != sign_c) {
                //check if same number
                return P32E2::ZERO;
            } else if sign_z == sign_c {
                frac64_z += frac64_c;
            } else if frac64_z < frac64_c {
                frac64_z = frac64_c - frac64_z;
                sign_z = sign_c;
            } else {
                frac64_z -= frac64_c;
            }
            k_z = k_a; // actually can be k_c too, no diff
            exp_a //same here
        };
        let rcarry = (frac64_z & 0x_8000_0000_0000_0000) != 0; //first left bit

        if rcarry {
            exp_z += 1;
            if exp_z > 3 {
                k_z += 1;
                exp_z &= 0x3;
            }
            frac64_z = (frac64_z >> 1) & 0x7FFF_FFFF_FFFF_FFFF;
        } else {
            //for subtract cases
            if frac64_z != 0 {
                while (frac64_z >> 59) == 0 {
                    k_z -= 1;
                    frac64_z <<= 4;
                }
                while (frac64_z >> 62) == 0 {
                    exp_z -= 1;
                    frac64_z <<= 1;
                    if exp_z < 0 {
                        k_z -= 1;
                        exp_z = 3;
                    }
                }
            }
        }
    } else {
        k_z = k_a;
        exp_z = exp_a;
    }

    let (regime, reg_sz, reg_z) = P32E2::calculate_regime(k_z);

    let u_z = if reg_z > 30 {
        //max or min pos. exp and frac does not matter.
        if reg_sz {
            0x7FFF_FFFF
        } else {
            0x1
        }
    } else {
        let mut bit_n_plus_one = false;
        let frac_z = if reg_z <= 28 {
            //remove hidden bits
            frac64_z &= 0x3FFF_FFFF_FFFF_FFFF;
            bit_n_plus_one = (0x0000_0002_0000_0000 & (frac64_z >> reg_z)) != 0;
            exp_z <<= 28 - reg_z;
            (frac64_z >> (reg_z + 34)) as u32 //frac32Z>>16;
        } else {
            if reg_z == 30 {
                bit_n_plus_one = (exp_z & 0x2) != 0;
                bits_more = (exp_z & 0x1) != 0;
                exp_z = 0;
            } else if reg_z == 29 {
                bit_n_plus_one = (exp_z & 0x1) != 0;
                exp_z >>= 1;
            }
            0
        };
        let mut u_z = P32E2::pack_to_ui(regime, exp_z as u32, frac_z);

        if bit_n_plus_one {
            if (frac64_z << (32 - reg_z)) != 0 {
                bits_more = true;
            }
            u_z += (u_z & 1) | (bits_more as u32);
        }
        u_z
    };
    P32E2::from_bits(u32_with_sign(u_z, sign_z))
}

#[test]
fn test_mul_add() {
    use rand::Rng;
    let mut rng = rand::thread_rng();
    for _ in 0..crate::NTESTS32 {
        let p_a: P32E2 = rng.gen();
        let p_b: P32E2 = rng.gen();
        let p_c: P32E2 = rng.gen();
        let f_a = f64::from(p_a);
        let f_b = f64::from(p_b);
        let f_c = f64::from(p_c);
        let p = p_a.mul_add(p_b, p_c);
        let f = f_a.mul_add(f_b, f_c);
        #[cfg(not(feature = "std"))]
        assert_eq!(p, P32E2::from(f));
        #[cfg(feature = "std")]
        assert_eq!(
            p,
            P32E2::from(f),
            "\n  input: ({p_a:?}, {p_b:?}, {p_c:?})\n   or: {f_a}, {f_b}, {f_c}\n  answer: {}, expected {f}",
            p.to_f64()
        );
    }
}