1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
use super::P16E1;
use crate::{u16_with_sign, MulAddType};

impl P16E1 {
    #[inline]
    pub const fn mul_add(self, b: Self, c: Self) -> Self {
        let ui_a = self.to_bits();
        let ui_b = b.to_bits();
        let ui_c = c.to_bits();
        mul_add(ui_a, ui_b, ui_c, crate::MulAddType::Add)
    }
    #[inline]
    pub const fn mul_sub(self, b: Self, c: Self) -> Self {
        let ui_a = self.to_bits();
        let ui_b = b.to_bits();
        let ui_c = c.to_bits();
        mul_add(ui_a, ui_b, ui_c, crate::MulAddType::SubC)
    }
    #[inline]
    pub const fn sub_product(self, a: Self, b: Self) -> Self {
        let ui_a = a.to_bits();
        let ui_b = b.to_bits();
        let ui_c = self.to_bits();
        mul_add(ui_a, ui_b, ui_c, crate::MulAddType::SubProd)
    }
}

//softposit_mulAdd_subC => (ui_a*ui_b)-ui_c
//softposit_mulAdd_subProd => ui_c - (ui_a*ui_b)
//Default is always op==0
#[allow(clippy::cognitive_complexity)]
const fn mul_add(mut ui_a: u16, mut ui_b: u16, mut ui_c: u16, op: MulAddType) -> P16E1 {
    let mut bits_more = false;

    //NaR
    if (ui_a == 0x8000) || (ui_b == 0x8000) || (ui_c == 0x8000) {
        return P16E1::NAR;
    } else if (ui_a == 0) || (ui_b == 0) {
        return match op {
            MulAddType::SubC => P16E1::from_bits(ui_c.wrapping_neg()),
            _ => P16E1::from_bits(ui_c),
        };
    }

    let sign_a = P16E1::sign_ui(ui_a);
    let sign_b = P16E1::sign_ui(ui_b);
    let sign_c = P16E1::sign_ui(ui_c); //^ (op == softposit_mulAdd_subC);
    let mut sign_z = sign_a ^ sign_b; // ^ (op == softposit_mulAdd_subProd);

    if sign_a {
        ui_a = ui_a.wrapping_neg();
    }
    if sign_b {
        ui_b = ui_b.wrapping_neg();
    }
    if sign_c {
        ui_c = ui_c.wrapping_neg();
    }

    let (mut k_a, tmp) = P16E1::separate_bits_tmp(ui_a);
    let mut exp_a = (tmp >> 14) as i8;
    let frac_a = 0x8000 | (tmp << 1); //use first bit here for hidden bit to get more bits

    let (k_b, tmp) = P16E1::separate_bits_tmp(ui_b);
    k_a += k_b;

    exp_a += (tmp >> 14) as i8;
    let mut frac32_z = (frac_a as u32) * ((0x8000 | (tmp << 1)) as u32); // first bit hidden bit

    if exp_a > 1 {
        k_a += 1;
        exp_a ^= 0x2;
    }

    let rcarry = (frac32_z & 0x8000_0000) != 0; //1st bit of frac32_z
    if rcarry {
        if exp_a != 0 {
            k_a += 1;
        }
        exp_a ^= 1;
        frac32_z >>= 1;
    }

    let mut k_z: i8;
    let mut exp_z: i8;
    //Add
    if ui_c != 0 {
        let (k_c, exp_c, frac_c) = P16E1::separate_bits(ui_c);
        let mut frac32_c = (frac_c as u32) << 16;

        let mut shift_right: i16 = (((k_a - k_c) as i16) << 1) + ((exp_a - exp_c) as i16); //actually this is the scale

        exp_z = if shift_right < 0 {
            // |ui_c| > |Prod Z|
            if shift_right <= -31 {
                bits_more = true;
                frac32_z = 0;
                shift_right = 0;
            } else if (frac32_z << (32 + shift_right)/*&0xFFFF_FFFF*/) != 0 {
                bits_more = true;
            }
            if sign_z == sign_c {
                frac32_z = frac32_c + (frac32_z >> -shift_right);
            } else {
                //different signs
                frac32_z = frac32_c - (frac32_z >> -shift_right);
                sign_z = sign_c;
                if bits_more {
                    frac32_z -= 1;
                }
            }
            k_z = k_c;
            exp_c
        } else if shift_right > 0 {
            // |ui_c| < |Prod|
            //if (frac32_c&((1<<shift_right)-1)) bits_more = 1;
            if shift_right >= 31 {
                bits_more = true;
                frac32_c = 0;
                shift_right = 0;
            } else if (frac32_c << (32 - shift_right)) != 0 {
                bits_more = true;
            }
            if sign_z == sign_c {
                frac32_z += frac32_c >> shift_right;
            } else {
                frac32_z -= frac32_c >> shift_right;
                if bits_more {
                    frac32_z -= 1;
                }
            }
            k_z = k_a;
            exp_a
        } else {
            if (frac32_c == frac32_z) && (sign_z != sign_c) {
                //check if same number
                return P16E1::ZERO;
            } else if sign_z == sign_c {
                frac32_z += frac32_c;
            } else if frac32_z < frac32_c {
                frac32_z = frac32_c - frac32_z;
                sign_z = sign_c;
            } else {
                frac32_z -= frac32_c;
            }
            k_z = k_a; // actually can be k_c too, no diff
            exp_a //same here
        };

        let rcarry = (frac32_z & 0x8000_0000) != 0; //first left bit
        if rcarry {
            if exp_z != 0 {
                k_z += 1;
            }
            exp_z ^= 1;
            if (frac32_z & 0x1) != 0 {
                bits_more = true;
            }
            frac32_z >>= 1 /*&0x7FFF_FFFF*/;
        } else {
            //for subtract cases
            if frac32_z != 0 {
                while (frac32_z >> 29) == 0 {
                    k_z -= 1;
                    frac32_z <<= 2;
                }
            }
            let ecarry = ((0x4000_0000 & frac32_z) >> 30) != 0;

            if !ecarry {
                if exp_z == 0 {
                    k_z -= 1;
                }
                exp_z ^= 1;
                frac32_z <<= 1;
            }
        }
    } else {
        k_z = k_a;
        exp_z = exp_a;
    }

    let (regime, reg_sz, reg_z) = P16E1::calculate_regime(k_z);

    let u_z = if reg_z > 14 {
        //max or min pos. exp and frac does not matter.
        if reg_sz {
            0x7FFF
        } else {
            0x1
        }
    } else {
        //remove hidden bits
        frac32_z &= 0x3FFF_FFFF;
        let mut frac_z = (frac32_z >> (reg_z + 17)) as u16;

        let mut bit_n_plus_one = false;
        if reg_z != 14 {
            bit_n_plus_one = ((frac32_z >> reg_z) & 0x10000) != 0;
        } else if frac32_z > 0 {
            frac_z = 0;
            bits_more = true;
        }
        if (reg_z == 14) && (exp_z != 0) {
            bit_n_plus_one = true;
        }
        let mut u_z = P16E1::pack_to_ui(regime, reg_z, exp_z as u16, frac_z);
        if bit_n_plus_one {
            if (frac32_z << (16 - reg_z)) != 0 {
                bits_more = true;
            }
            u_z += (u_z & 1) | (bits_more as u16);
        }
        u_z
    };

    P16E1::from_bits(u16_with_sign(u_z, sign_z))
}

#[test]
fn test_mul_add() {
    use rand::Rng;
    let mut rng = rand::thread_rng();
    for _ in 0..crate::NTESTS16 {
        let p_a: P16E1 = rng.gen();
        let p_b: P16E1 = rng.gen();
        let p_c: P16E1 = rng.gen();
        let f_a = f64::from(p_a);
        let f_b = f64::from(p_b);
        let f_c = f64::from(p_c);
        let p = p_a.mul_add(p_b, p_c);
        let f = f_a.mul_add(f_b, f_c);
        assert_eq!(p, P16E1::from(f));
    }
}