1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
use super::P32E2;
use crate::{MulAddType, WithSign};

impl P32E2 {
    #[inline]
    pub fn mul_add(self, b: Self, c: Self) -> Self {
        let ui_a = self.to_bits();
        let ui_b = b.to_bits();
        let ui_c = c.to_bits();
        mul_add(ui_a, ui_b, ui_c, crate::MulAddType::Add)
    }
    #[inline]
    pub fn round(self) -> Self {
        round(self)
    }
    #[inline]
    pub fn sqrt(self) -> Self {
        sqrt(self)
    }
}

pub(super) fn mul_add(mut ui_a: u32, mut ui_b: u32, mut ui_c: u32, op: MulAddType) -> P32E2 {
    let mut bits_more = false;
    //NaR
    if (ui_a == 0x8000_0000) || (ui_b == 0x8000_0000) || (ui_c == 0x8000_0000) {
        return P32E2::INFINITY;
    } else if (ui_a == 0) || (ui_b == 0) {
        return match op {
            MulAddType::SubC => P32E2::from_bits(ui_c.wrapping_neg()),
            _ => P32E2::from_bits(ui_c),
        };
    }

    let sign_a = P32E2::sign_ui(ui_a);
    let sign_b = P32E2::sign_ui(ui_b);
    let sign_c = P32E2::sign_ui(ui_c); //^ (op == softposit_mulAdd_subC);
    let mut sign_z = sign_a ^ sign_b; // ^ (op == softposit_mulAdd_subProd);

    if sign_a {
        ui_a = ui_a.wrapping_neg();
    }
    if sign_b {
        ui_b = ui_b.wrapping_neg();
    }
    if sign_c {
        ui_c = ui_c.wrapping_neg();
    }

    let (mut k_a, tmp) = P32E2::separate_bits_tmp(ui_a);
    let mut exp_a = (tmp >> 29) as i32; //to get 2 bits
    let frac_a = (tmp << 2) | 0x8000_0000;

    let (k_b, tmp) = P32E2::separate_bits_tmp(ui_b);
    k_a += k_b;
    exp_a += (tmp >> 29) as i32;
    let mut frac64_z = (frac_a as u64) * (((tmp << 2) | 0x8000_0000) as u64);

    if exp_a > 3 {
        k_a += 1;
        exp_a &= 0x3; // -=4
    }

    let rcarry = (frac64_z & 0x_8000_0000_0000_0000) != 0; //1st bit of frac64_z
    if rcarry {
        exp_a += 1;
        if exp_a > 3 {
            k_a += 1;
            exp_a &= 0x3;
        }
        frac64_z >>= 1;
    }

    let mut k_z;
    let mut exp_z: i32;
    if ui_c != 0 {
        let (k_c, exp_c, frac_c) = P32E2::separate_bits(ui_c);
        let mut frac64_c = (frac_c as u64) << 32;
        let mut shift_right = (((k_a - k_c) as i16) << 2) + (exp_a - exp_c) as i16;

        exp_z = if shift_right < 0 {
            // |ui_c| > |Prod|
            if shift_right <= -63 {
                bits_more = true;
                frac64_z = 0;
                shift_right = 0;
            //set bits_more to one?
            } else if (frac64_z << (64 + shift_right)) != 0 {
                bits_more = true;
            }
            if sign_z == sign_c {
                frac64_z = frac64_c + (frac64_z >> -shift_right);
            } else {
                //different signs
                frac64_z = frac64_c - (frac64_z >> -shift_right);
                sign_z = sign_c;
                if bits_more {
                    frac64_z -= 1;
                }
            }
            k_z = k_c;
            exp_c
        } else if shift_right > 0 {
            // |ui_c| < |Prod|
            //if frac32C&((1<<shift_right)-1) {bits_more = true;}
            if shift_right >= 63 {
                bits_more = true;
                frac64_c = 0;
                shift_right = 0;
            } else if (frac64_c << (64 - shift_right)) != 0 {
                bits_more = true;
            }
            if sign_z == sign_c {
                frac64_z += frac64_c >> shift_right;
            } else {
                frac64_z -= frac64_c >> shift_right;
                if bits_more {
                    frac64_z -= 1;
                }
            }
            k_z = k_a;
            exp_a
        } else {
            if (frac64_c == frac64_z) && (sign_z != sign_c) {
                //check if same number
                return P32E2::ZERO;
            } else if sign_z == sign_c {
                frac64_z += frac64_c;
            } else if frac64_z < frac64_c {
                frac64_z = frac64_c - frac64_z;
                sign_z = sign_c;
            } else {
                frac64_z -= frac64_c;
            }
            k_z = k_a; // actually can be k_c too, no diff
            exp_a //same here
        };
        let rcarry = (frac64_z & 0x_8000_0000_0000_0000) != 0; //first left bit

        if rcarry {
            exp_z += 1;
            if exp_z > 3 {
                k_z += 1;
                exp_z &= 0x3;
            }
            frac64_z = (frac64_z >> 1) & 0x7FFF_FFFF_FFFF_FFFF;
        } else {
            //for subtract cases
            if frac64_z != 0 {
                while (frac64_z >> 59) == 0 {
                    k_z -= 1;
                    frac64_z <<= 4;
                }
                while (frac64_z >> 62) == 0 {
                    exp_z -= 1;
                    frac64_z <<= 1;
                    if exp_z < 0 {
                        k_z -= 1;
                        exp_z = 3;
                    }
                }
            }
        }
    } else {
        k_z = k_a;
        exp_z = exp_a;
    }

    let (regime, reg_sz, reg_z) = P32E2::calculate_regime(k_z);

    let u_z = if reg_z > 30 {
        //max or min pos. exp and frac does not matter.
        if reg_sz {
            0x7FFF_FFFF
        } else {
            0x1
        }
    } else {
        let mut bit_n_plus_one = false;
        let frac_z = if reg_z <= 28 {
            //remove hidden bits
            frac64_z &= 0x3FFF_FFFF_FFFF_FFFF;
            bit_n_plus_one = (0x0000_0002_0000_0000 & (frac64_z >> reg_z)) != 0;
            exp_z <<= 28 - reg_z;
            (frac64_z >> (reg_z + 34)) as u32 //frac32Z>>16;
        } else {
            if reg_z == 30 {
                bit_n_plus_one = (exp_z & 0x2) != 0;
                bits_more = (exp_z & 0x1) != 0;
                exp_z = 0;
            } else if reg_z == 29 {
                bit_n_plus_one = (exp_z & 0x1) != 0;
                exp_z >>= 1;
            }
            0
        };
        let mut u_z = P32E2::pack_to_ui(regime, exp_z as u32, frac_z);

        if bit_n_plus_one {
            if (frac64_z << (32 - reg_z)) != 0 {
                bits_more = true;
            }
            u_z += (u_z & 1) | (bits_more as u32);
        }
        u_z
    };
    P32E2::from_bits(u_z.with_sign(sign_z))
}

pub(super) fn round(p_a: P32E2) -> P32E2 {
    let mut mask = 0x2000_0000_u32;
    let mut scale = 0_u32;

    let u_a: u32;

    let mut ui_a = p_a.to_bits();
    let sign = (ui_a & 0x8000_0000) != 0;

    // sign is True if pA > NaR.
    if sign {
        ui_a = ui_a.wrapping_neg();
    } // A is now |A|.
    if ui_a <= 0x3800_0000 {
        // 0 <= |pA| <= 1/2 rounds to zero.
        return P32E2::ZERO;
    } else if ui_a < 0x4400_0000 {
        // 1/2 < x < 3/2 rounds to 1.
        u_a = 0x4000_0000;
    } else if ui_a <= 0x4A00_0000 {
        // 3/2 <= x <= 5/2 rounds to 2.
        u_a = 0x4800_0000;
    } else if ui_a >= 0x7E80_0000 {
        // If |A| is 0x7E80_0000 (posit is pure integer value), leave it unchanged.
        return p_a; // This also takes care of the NaR case, 0x8000_0000.
    } else {
        // 34% of the cases, we have to decode the posit.

        while (mask & ui_a) != 0 {
            scale += 4;
            mask >>= 1;
        }
        mask >>= 1;

        //Exponential (2 bits)
        if (mask & ui_a) != 0 {
            scale += 2;
        }
        mask >>= 1;
        if (mask & ui_a) != 0 {
            scale += 1;
        }
        mask >>= scale;

        //the rest of the bits
        let bit_last = (ui_a & mask) != 0;
        mask >>= 1;
        let mut tmp = ui_a & mask;
        let bit_n_plus_one = tmp != 0;
        ui_a ^= tmp; // Erase the bit, if it was set.
        tmp = ui_a & (mask - 1); // this is actually bits_more

        ui_a ^= tmp;

        if bit_n_plus_one && (((bit_last as u32) | tmp) != 0) {
            ui_a += mask << 1;
        }
        u_a = ui_a;
    }
    P32E2::from_bits(u_a.with_sign(sign))
}

#[inline]
pub(super) fn sqrt(p_a: P32E2) -> P32E2 {
    let mut ui_a = p_a.to_bits();

    // If NaR or a negative number, return NaR.
    if (ui_a & 0x8000_0000) != 0 {
        return P32E2::INFINITY;
    }
    // If the argument is zero, return zero.
    else if ui_a == 0 {
        return p_a;
    }
    // Compute the square root; shift_z is the power-of-2 scaling of the result.
    // Decode regime and exponent; scale the input to be in the range 1 to 4:
    let mut shift_z: i32;
    if (ui_a & 0x4000_0000) != 0 {
        shift_z = -2;
        while (ui_a & 0x4000_0000) != 0 {
            shift_z += 2;
            ui_a <<= 1 /*() & 0xFFFF_FFFF*/;
        }
    } else {
        shift_z = 0;
        while (ui_a & 0x4000_0000) == 0 {
            shift_z -= 2;
            ui_a <<= 1 /*90 & 0xFFFF_FFFF*/;
        }
    }

    ui_a &= 0x3FFF_FFFF;
    let mut exp_a = ui_a >> 28;
    shift_z += (exp_a >> 1) as i32;
    exp_a = 0x1 ^ (exp_a & 0x1);
    ui_a &= 0x0FFF_FFFF;
    let frac_a = ui_a | 0x1000_0000;

    // Use table look-up of first 4 bits for piecewise linear approx. of 1/sqrt:
    let index = (((frac_a >> 24) & 0xE) + exp_a) as usize;
    let eps = ((frac_a >> 9) & 0xFFFF) as i32;
    let r0: u32 = (crate::APPROX_RECIP_SQRT0[index] as u32)
        - (((crate::APPROX_RECIP_SQRT1[index] as u32) * (eps as u32)) >> 20);

    // Use Newton-Raphson refinement to get 33 bits of accuracy for 1/sqrt:
    let mut e_sqr_r0 = (r0 as u64) * (r0 as u64);
    if exp_a == 0 {
        e_sqr_r0 <<= 1;
    }
    let sigma0: u64 = 0xFFFF_FFFF & (0xFFFF_FFFF ^ ((e_sqr_r0 * (frac_a as u64)) >> 20));
    let mut recip_sqrt: u64 = ((r0 as u64) << 20) + (((r0 as u64) * sigma0) >> 21);

    let sqr_sigma0 = (sigma0 * sigma0) >> 35;
    recip_sqrt += ((recip_sqrt + (recip_sqrt >> 2) - ((r0 as u64) << 19)) * sqr_sigma0) >> 46;

    let mut frac_z = ((frac_a as u64).wrapping_mul(recip_sqrt)) >> 31;
    if exp_a != 0 {
        frac_z >>= 1;
    }

    // Find the exponent of Z and encode the regime bits.
    let exp_z = (shift_z as u32) & 0x3;
    let shift: u32;
    let ui_z: u32 = if shift_z < 0 {
        shift = ((-1 - shift_z) >> 2) as u32;
        0x2000_0000 >> shift
    } else {
        shift = (shift_z >> 2) as u32;
        0x7FFF_FFFF - (0x3FFF_FFFF >> shift)
    };

    // Trick for eliminating off-by-one cases that only uses one multiply:
    frac_z += 1;

    if (frac_z & 0xF) == 0 {
        let shifted_frac_z = frac_z >> 1;
        let neg_rem = (shifted_frac_z * shifted_frac_z) & 0x1_FFFF_FFFF;
        if (neg_rem & 0x1_0000_0000) != 0 {
            frac_z |= 1;
        } else if neg_rem != 0 {
            frac_z -= 1;
        }
    }
    // Strip off the hidden bit and round-to-nearest using last shift+5 bits.
    frac_z &= 0xFFFF_FFFF;
    let mask = 1 << (4 + shift);
    if ((mask & frac_z) != 0) && ((((mask - 1) & frac_z) | ((mask << 1) & frac_z)) != 0) {
        frac_z += mask << 1;
    }
    // Assemble the result and return it.
    P32E2::from_bits(ui_z | (exp_z << (27 - shift)) | (frac_z >> (5 + shift)) as u32)
}

#[test]
fn test_mul_add() {
    use rand::Rng;
    let mut rng = rand::thread_rng();
    for _ in 0..crate::NTESTS32 {
        let n_a = rng.gen_range(-0x_7fff_ffff_i32, 0x_7fff_ffff);
        let n_b = rng.gen_range(-0x_7fff_ffff_i32, 0x_7fff_ffff);
        let n_c = rng.gen_range(-0x_7fff_ffff_i32, 0x_7fff_ffff);
        let p_a = P32E2::new(n_a);
        let p_b = P32E2::new(n_b);
        let p_c = P32E2::new(n_c);
        let f_a = f64::from(p_a);
        let f_b = f64::from(p_b);
        let f_c = f64::from(p_c);
        let p = p_a.mul_add(p_b, p_c);
        let f = f_a.mul_add(f_b, f_c);
        assert_eq!(p, P32E2::from(f));
    }
}

#[test]
fn test_sqrt() {
    use rand::Rng;
    let mut rng = rand::thread_rng();
    for _ in 0..crate::NTESTS32 {
        let n_a = rng.gen_range(-0x_7fff_ffff_i32, 0x_7fff_ffff);
        let p_a = P32E2::new(n_a);
        let f_a = f64::from(p_a);
        let p = p_a.sqrt();
        let f = f_a.sqrt();
        assert_eq!(p, P32E2::from(f));
    }
}

#[test]
fn test_round() {
    use rand::Rng;
    let mut rng = rand::thread_rng();
    for _ in 0..crate::NTESTS32 {
        let n_a = rng.gen_range(-0x_7fff_ffff_i32, 0x_7fff_ffff);
        let p_a = P32E2::new(n_a);
        let f_a = f64::from(p_a);
        let p = p_a.round();
        let f = f_a.round();
        if (f - f_a).abs() == 0.5 {
            continue;
        }
        assert_eq!(p, P32E2::from(f));
    }
}