1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#![allow(non_snake_case)]
#![feature(allocator_api, alloc_layout_extra)]
//! Soa2, Soa3, ..SoaN are generic collections with an API similar to that of a Vec of tuples but which store
//! the data laid out as a separate slice per field. The advantage of this layout is that when
//! iterating over the data only a subset need be loaded from RAM.
//!
//! This approach is common to game engines, and entity component systems in particular but is
//! applicable anywhere that cache coherency and memory bandwidth are important for performance.
//!
//!
//! # Example
//! ```
//! # use soa_vec::Soa3;
//! /// Some 'entity' data.
//! # #[derive(Copy, Clone)]
//! struct Position { x: f64, y: f64 }
//! # #[derive(Copy, Clone)]
//! struct Velocity { dx: f64, dy: f64 }
//! struct ColdData { /* Potentially many fields omitted here */ }
//!
//! # use std::ops::Add;
//! # impl Add<Velocity> for Position { type Output=Self; fn add(self, other: Velocity) -> Self { Self { x: self.x + other.dx, y: self.y + other.dy } } }
//! // Create a vec of entities
//! let mut entities = Soa3::new();
//! entities.push((Position {x: 1.0, y: 2.0}, Velocity { dx: 0.0, dy: 0.5 }, ColdData {}));
//! entities.push((Position {x: 0.0, y: 2.0}, Velocity { dx: 0.5, dy: 0.5 }, ColdData {}));
//!
//! // Update entities. This loop only loads position and velocity data, while skipping over
//! // the ColdData which is not necessary for the physics simulation.
//! let (positions, velocities, _cold) = entities.iters_mut();
//! for (position, velocity) in positions.zip(velocities) {
//! 	*position = *position + *velocity;
//! }
//!
//! // Remove an entity
//! entities.swap_remove(0);
//!
//! // Sort entities by position on y axis
//! // The fields are passed by reference, so velocity and cold data are not loaded
//! // until such time as the items are being swapped which runs in O(N)
//! # use std::cmp;
//! entities.sort_unstable_by(
//! 	|(lh_pos, _, _), (rh_pos, _, _)| lh_pos.y.partial_cmp(&rh_pos.y).unwrap()
//! );
//!
//! // See individual structs for more methods.
//!
//! ```
//!
//!
//! # Nightly
//! This crate has strict requirements for allocations and memory layout and therefore requires the following nightly features:
//! * allocator_api
//! * alloc_layout_extra
//!
//! # Links:
//! * [Github source](https://github.com/That3Percent/soa-vec)
//! * [Crate](https://crates.io/crates/soa-vec)
//!
//! # License
//! [MIT](https://github.com/That3Percent/soa-vec/blob/master/LICENSE)
//!
//! # Related
//! If you like this, you may like these other crates by Zac Burns (That3Percent)
//! * [second-stack](https://github.com/That3Percent/second-stack) A Rust memory allocator for large slices that don't escape the stack.
//! * [js-intern](https://github.com/That3Percent/js-intern) Stores one copy of each distinct JavaScript primitive
//! * [js-object](https://github.com/That3Percent/js-object) A macro for creating JavaScript objects




use second_stack::*;
use std::{alloc::*, cmp::*, marker::*, ptr::*, slice::*};

/// This macro defines a struct-of-arrays style struct.
/// It need not be called often, just once per count of generic parameters.
macro_rules! soa {
	($name:ident, $L:ident, $t1:ident, $($ts:ident),+) => {
		/// Struct of arrays storage with vec API. See module docs for more information.
		pub struct $name<$t1: Sized $(, $ts: Sized)*> {
			len: usize,
			capacity: usize,
			$t1: NonNull<$t1>,
			$($ts: NonNull<$ts>,)*
			_marker: (PhantomData<$t1> $(, PhantomData<$ts>)*),
		}

		impl<$t1: Sized $(, $ts: Sized)*> $name<$t1 $(, $ts)*> {
			/// Creates a new Soa with a capacity of 0
			pub fn new() -> $name<$t1 $(, $ts)*> {
				$name {
					len: 0,
					capacity: 0,
					$t1: NonNull::dangling(),
					$($ts: NonNull::dangling(),)*
					_marker: (PhantomData $(, PhantomData::<$ts>)*),
				}
			}

			/// Constructs a new, empty Soa with the specified capacity.
			/// The soa will be able to hold exactly capacity elements without reallocating. If capacity is 0, the soa will not allocate.
			/// It is important to note that although the returned soa has the capacity specified, the soa will have a zero length.
			pub fn with_capacity(capacity: usize) -> $name<$t1 $(, $ts)*> {
				if capacity == 0 {
					Self::new()
				} else {
					let ($t1 $(,$ts)*) = Self::alloc(capacity);

					Self {
						capacity,
						len: 0,
						$t1: $t1,
						$($ts: $ts,)*
						_marker: (PhantomData $(, PhantomData::<$ts>)*),
					}
				}
			}

			fn dealloc(&mut self) {
				if self.capacity > 0 {
					let layout = Self::layout_for_capacity(self.capacity).layout;
					unsafe { Global.dealloc(self.$t1.cast::<u8>(), layout) }
				}
			}

			/// Allocates and partitions a new region of uninitialized memory
			fn alloc(capacity: usize) -> (NonNull<$t1> $(, NonNull<$ts>)*) {
				unsafe {
					let layouts = Self::layout_for_capacity(capacity);
					let bytes = Global.alloc(layouts.layout).unwrap();
					(
						bytes.cast::<$t1>()
						$(, NonNull::new_unchecked(bytes.as_ptr().add(layouts.$ts) as *mut $ts))*
					)
				}
			}

			fn check_grow(&mut self) {
				unsafe {
					if self.len == self.capacity {
						let capacity = (self.capacity * 2).max(4);
						let ($t1 $(, $ts)*) = Self::alloc(capacity);

						copy_nonoverlapping(self.$t1.as_ptr(), $t1.as_ptr(), self.len);
						$(
							copy_nonoverlapping(self.$ts.as_ptr(), $ts.as_ptr(), self.len);
						)*

						self.dealloc();

						// Assign
						self.$t1 = $t1;
						$(self.$ts = $ts;)*
						self.capacity = capacity;

					}
				}
			}

			/// Returns the number of tuples in the soa, also referred to as its 'length'.
			#[inline(always)]
			pub fn len(&self) -> usize { self.len }

			/// Returns the number of elements the soa can hold without reallocating.
			#[inline(always)]
			pub fn capacity(&self) -> usize { self.capacity }

			/// Returns true if the soa has a length of 0.
			#[inline(always)]
			pub fn is_empty(&self) -> bool { self.len == 0 }

			/// Clears the soa, removing all values.
			/// Note that this method has no effect on the allocated capacity of the soa.
			pub fn clear(&mut self) {
				while self.len > 0 {
					self.pop();
				}
			}

			/// Appends a tuple to the back of a soa.
			pub fn push(&mut self, value: ($t1 $(, $ts)*)) {
				unsafe {
					self.check_grow();
					let ($t1 $(, $ts)*) = value;
					write(self.$t1.as_ptr().add(self.len), $t1);
					$(write(self.$ts.as_ptr().add(self.len), $ts);)*
					self.len += 1;
				}
			}

			/// Inserts an element at position index within each array, shifting all elements after it to the right.
			///
			/// # Panics
			/// Must panic if index > len.
			pub fn insert(&mut self, index: usize, value: ($t1 $(, $ts)*)) {
				let len = self.len;
				assert!(index <= len);
				unsafe {
					self.check_grow(); // TODO: (Performance) In the case where we do grow, this can result in redundant copying.

					let ($t1 $(, $ts)*) = value;

					{
						let p = self.$t1.as_ptr().add(index);
						copy(p, p.offset(1), len - index);
						write(p, $t1);
					}

					$({
						let p = self.$ts.as_ptr().add(index);
						copy(p, p.offset(1), len - index);
						write(p, $ts);
					})*
					self.len = len + 1;
				}
			}

			/// Removes the last tuple from a soa and returns it, or None if it is empty.
			pub fn pop(&mut self) -> Option<($t1 $(, $ts)*)> {
				if self.len == 0 {
					None
				} else {
					self.len -= 1;
					unsafe {
						Some((
							read(self.$t1.as_ptr().add(self.len))
							$(, read(self.$ts.as_ptr().add(self.len)))*
						))
					}
				}
			}

			/// Removes and returns the element at position index within the vector, shifting all elements after it to the left.
			/// # Panics
			/// Must panic if index is out of bounds.
			pub fn remove(&mut self, index: usize) -> ($t1 $(, $ts)*) {
				let len = self.len;
				assert!(index < len);
				unsafe {
					let $t1;
					$(let $ts;)*

					{
						let ptr = self.$t1.as_ptr().add(index);
						$t1 = read(ptr);
						copy(ptr.offset(1), ptr, len - index - 1);
					}

					$({
						let ptr = self.$ts.as_ptr().add(index);
						$ts = read(ptr);
						copy(ptr.offset(1), ptr, len - index - 1);
					})*

					self.len = len - 1;

					($t1 $(, $ts)*)
				}
			}

			/// Removes a tuple from the soa and returns it.
			/// The removed tuple is replaced by the last tuple of the soa.
			/// This does not preserve ordering, but is O(1).
			///
			/// # Panics:
			///  * Must panic if index is out of bounds
			pub fn swap_remove(&mut self, index: usize) -> ($t1 $(, $ts)*) {
				if index >= self.len {
					panic!("Index out of bounds");
				}

				unsafe {
					let $t1 = self.$t1.as_ptr().add(index);
					$(let $ts = self.$ts.as_ptr().add(index);)*

					let v = (
						read($t1)
						$(, read($ts))*
					);

					self.len -= 1;

					if self.len != index {
						copy_nonoverlapping(self.$t1.as_ptr().add(self.len), $t1, 1);
						$(copy_nonoverlapping(self.$ts.as_ptr().add(self.len), $ts, 1);)*
					}

					v
				}
			}

			fn layout_for_capacity(capacity: usize) -> $L {
				let layout = Layout::array::<$t1>(capacity).unwrap();

				$(let (layout, $ts) = layout.extend(Layout::array::<$ts>(capacity).unwrap()).unwrap();)*

				$L {
					layout
					$(, $ts)*
				}
			}

			/// Returns a tuple of all the destructured tuples added to this soa.
			#[inline(always)] // Inline for dead code elimination
			pub fn slices<'a>(&self) -> (&'a [$t1] $(, &'a [$ts])*) {
				unsafe {
					(
						from_raw_parts::<'a>(self.$t1.as_ptr(), self.len),
						$(from_raw_parts::<'a>(self.$ts.as_ptr(), self.len),)*
					)
				}
			}

			/// Returns a tuple of iterators over each field in the soa.
			#[inline(always)] // Inline for dead code elimination
			pub fn iters<'a>(&self) -> (Iter<'a, $t1> $(, Iter<'a, $ts>)*) {
				unsafe {
					(
						from_raw_parts::<'a>(self.$t1.as_ptr(), self.len).iter()
						$(, from_raw_parts::<'a>(self.$ts.as_ptr(), self.len).iter())*
					)
				}
			}

			/// Returns a tuple of mutable iterators over each field in the soa.
			#[inline(always)] // Inline for dead code elimination
			pub fn iters_mut<'a>(&mut self) -> (IterMut<'a, $t1> $(, IterMut<'a, $ts>)*) {
				unsafe {
					(
						from_raw_parts_mut::<'a>(self.$t1.as_ptr(), self.len).iter_mut()
						$(, from_raw_parts_mut::<'a>(self.$ts.as_ptr(), self.len).iter_mut())*
					)
				}
			}

			/// Returns a tuple of all the destructured mutable tuples added to this soa.
			#[inline(always)] // Inline for dead code elimination
			pub fn slices_mut<'a>(&self) -> (&'a mut [$t1] $(, &'a mut [$ts])*) {
				unsafe {
					(
						from_raw_parts_mut::<'a>(self.$t1.as_ptr(), self.len),
						$(from_raw_parts_mut::<'a>(self.$ts.as_ptr(), self.len),)*
					)
				}
			}

			/// This is analogous to the index operator in vec, but returns a tuple of references.
			/// ## Panics
			/// * If index is >= len
			pub fn index<'a>(&self, index: usize) -> (&'a $t1 $(, &'a $ts)*) {
				unsafe {
					if index >= self.len {
						panic!("Index out of range");
					}

					(
						&*self.$t1.as_ptr().add(index)
						$(, &*self.$ts.as_ptr().add(index))*
					)
				}
			}

			/// Sorts the soa keeping related data together.
			pub fn sort_unstable_by<F: FnMut((&$t1 $(, &$ts)*), (&$t1 $(, &$ts)*))->Ordering>(&mut self, mut f: F) {
				if self.len < 2 {
					return;
				}
				let mut indices = acquire(0..self.len);

				indices.sort_unstable_by(|a, b| unsafe {
					f(
						(&*self.$t1.as_ptr().add(*a) $(, &*self.$ts.as_ptr().add(*a))*, ),
						(&*self.$t1.as_ptr().add(*b) $(, &*self.$ts.as_ptr().add(*b))*, ),
					)});

				// Example
				// c b d e a
				// 4 1 0 2 3 // indices
				// 2 1 3 4 0 // lookup

				let mut lookup = unsafe { acquire_uninitialized(self.len) };
				for (i, index) in indices.iter().enumerate() {
					lookup[*index] = i;
				}

				let ($t1 $(, $ts)*) = self.slices_mut();

				for i in 0..indices.len() {
					let dest = indices[i]; // The index that should go here
					if i != dest {
						// Swap
						$t1.swap(i, dest);
						$($ts.swap(i, dest);)*

						// Account for swaps that already happened
						indices[lookup[i]] = dest;
						lookup[dest] = lookup[i];
					}
				}
			}
		}

		struct $L {
			layout: Layout,
			$($ts: usize,)*
		}


		impl<$t1: Sized $(, $ts: Sized)*> Drop for $name<$t1 $(, $ts)*> {
			fn drop(&mut self) {
				self.clear(); // Drop owned items
				self.dealloc()
			}
		}


		impl<$t1: Clone + Sized $(, $ts: Clone + Sized)*> Clone for $name<$t1 $(, $ts)*> {
			fn clone(&self) -> Self {
				let mut result = Self::with_capacity(self.len);

				unsafe {
					for i in 0..self.len {
						// We do all the cloning first, then the ptr writing and length update
						// to ensure drop on panic in case any clone panics. If we write to early,
						// then the soa will not drop the most recently written item.
						// TODO: (Performance) - It may be better to do each slice individually,
						// but we'll need some kind of intermediate struct to handle drop before
						// everything is put into the Soa.
						let $t1 = (&*(self.$t1.as_ptr().add(i))).clone();
						$(let $ts = (&*(self.$ts.as_ptr().add(i))).clone();)*
						write(result.$t1.as_ptr().add(i), $t1);
						$(write(result.$ts.as_ptr().add(i), $ts);)*;

						result.len = i + 1;
					}
				}
				result
			}
		}

		impl<$t1: Sized $(, $ts: Sized)*> Default for $name<$t1 $(, $ts)*> {
			fn default() -> Self { Self::new() }
		}
	};
}

soa!(Soa2, _2, T1, T2);
soa!(Soa3, _3, T1, T2, T3);
soa!(Soa4, _4, T1, T2, T3, T4);
soa!(Soa5, _5, T1, T2, T3, T4, T5);
soa!(Soa6, _6, T1, T2, T3, T4, T5, T6);
soa!(Soa7, _7, T1, T2, T3, T4, T5, T6, T7);
soa!(Soa8, _8, T1, T2, T3, T4, T5, T6, T7, T8);

#[cfg(test)]
mod tests {
    use super::*;
    use testdrop::TestDrop;

    #[test]
    fn layouts_do_not_overlap() {
        // Trying with both (small, large) and (large, small) to ensure nothing bleeds into anything else.
        // This verifies we correctly chunk the slices from the larger allocations.
        let mut soa_ab = Soa2::new();
        let mut soa_ba = Soa2::new();

        fn ab(v: usize) -> (u8, f64) {
            (v as u8, 200.0 + ((v as f64) / 200.0))
        }

        fn ba(v: usize) -> (f64, u8) {
            (15.0 + ((v as f64) / 16.0), (200 - v) as u8)
        }

        // Combined with the tests inside, also verifies that we are copying the data on grow correctly.
        for i in 0..100 {
            soa_ab.push(ab(i));
            let (a, b) = soa_ab.slices();
            assert_eq!(i + 1, a.len());
            assert_eq!(i + 1, b.len());
            assert_eq!(ab(0).0, a[0]);
            assert_eq!(ab(0).1, b[0]);
            assert_eq!(ab(i).0, a[i]);
            assert_eq!(ab(i).1, b[i]);

            soa_ba.push(ba(i));
            let (b, a) = soa_ba.slices();
            assert_eq!(i + 1, a.len());
            assert_eq!(i + 1, b.len());
            assert_eq!(ba(0).0, b[0]);
            assert_eq!(ba(0).1, a[0]);
            assert_eq!(ba(i).0, b[i]);
            assert_eq!(ba(i).1, a[i]);
        }
    }

    #[test]
    fn sort() {
        let mut soa = Soa3::new();

        soa.push((3, 'a', 4.0));
        soa.push((1, 'b', 5.0));
        soa.push((2, 'c', 6.0));

        soa.sort_unstable_by(|(a1, _, _), (a2, _, _)| a1.cmp(a2));

        assert_eq!(soa.index(0), (&1, &('b'), &5.0));
        assert_eq!(soa.index(1), (&2, &('c'), &6.0));
        assert_eq!(soa.index(2), (&3, &('a'), &4.0));
    }

    #[test]
    fn drops() {
        let td = TestDrop::new();
        let (id, item) = td.new_item();
        {
            let mut soa = Soa2::new();
            soa.push((1.0, item));

            // Did not drop when moved into the vec
            td.assert_no_drop(id);

            // Did not drop through resizing the vec.
            for _ in 0..50 {
                soa.push((2.0, td.new_item().1));
            }
            td.assert_no_drop(id);
        }
        // Dropped with the vec
        td.assert_drop(id);
    }

    #[test]
    fn clones() {
        let mut src = Soa2::new();
        src.push((1.0, 2.0));
        src.push((3.0, 4.0));

        let dst = src.clone();
        assert_eq!(dst.len(), 2);
        assert_eq!(dst.index(0), (&1.0, &2.0));
        assert_eq!(dst.index(1), (&3.0, &4.0));
    }

	#[test]
	fn insert() {
		let mut src = Soa2::new();
		src.insert(0, (1, 2));
		src.insert(0, (3, 4));
		src.insert(1, (4, 5));
		assert_eq!(src.index(0), (&3, &4));
		assert_eq!(src.index(1), (&4, &5));
		assert_eq!(src.index(2), (&1, &2));
	}

	#[test]
	fn remove() {
		let mut src = Soa2::new();
		src.push((1, 2));
		src.push((3, 4));
		assert_eq!(src.remove(0), (1, 2));
		assert_eq!(src.remove(0), (3, 4));
		assert_eq!(src.len(), 0);
	}
}