1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
//! Rust SNTP client
//!
//! # Overview
//!
//! This crate provides a method for sending requests to NTP servers
//! and process responses, extracting received timestamp. Supported SNTP protocol
//! versions:
//! - [SNTPv4](https://datatracker.ietf.org/doc/html/rfc4330)
//!
//! # Usage
//!
//! Put this in your `Cargo.toml`:
//! ```cargo
//! [dependencies]
//! sntpc = "0.3.7"
//! ```
//!
//! ## Features
//!
//! Sntpc supports several features:
//! - `std`: includes functionality that depends on the standard library
//! - `utils`: includes functionality that mostly OS specific and allows system time sync
//! - `log`: enables library debug output during execution
//! - `async`: enables asynchronous feature support
//!
//! <div class="example-wrap" style="display:inline-block"><pre class="compile_fail" style="white-space:normal;font:inherit;">
//!
//! **Warning**: `utils` feature is not stable and may change in the future.
//! </pre></div>
//!
//! # Details
//!
//! There are multiple approaches how the library can be used:
//! - under environments where a networking stuff is hidden in system/RTOS kernel, [`get_time`] can
//! be used since it encapsulates network I/O
//! - under environments where TCP/IP stack requires to call some helper functions like `poll`,
//! `wait`, etc. and/or there are no options to perform I/O operations within a single call,
//! [`sntp_send_request`] and [`sntp_process_response`] can be used
//!
//! As `sntpc` supports `no_std` environment as well, it was
//! decided to provide a set of traits to implement for a network object (`UdpSocket`)
//! and timestamp generator:
//! - [`NtpUdpSocket`] trait should be implemented for `UdpSocket`-like objects for the
//! library to be able to send and receive data from NTP servers
//! - [`NtpTimestampGenerator`] trait should be implemented for timestamp generator objects to
//! provide the library with system related timestamps
//!
//! ## Logging support
//!
//! Library debug logs can be enabled in executables by enabling `log` feature. Server
//! addresses, response payload will be printed.
//!
//! # Example
//!
//! ```rust
//! # #[cfg(not(feature = "std"))]
//! # use no_std_net::{SocketAddr, ToSocketAddrs, IpAddr, Ipv4Addr};
//! # #[cfg(feature = "std")]
//! use std::net::UdpSocket;
//! use std::time::Duration;
//!
//! # #[cfg(not(feature = "std"))]
//! # #[derive(Debug)]
//! # struct UdpSocket;
//! # #[cfg(not(feature = "std"))]
//! # impl UdpSocket {
//! #     fn bind(addr: &str) -> sntpc::Result<Self> {
//! #         Ok(UdpSocket)
//! #     }
//! #     fn send_to<T: ToSocketAddrs>(&self, buf: &[u8], dest: T) -> sntpc::Result<usize> {
//! #         Ok(0usize)
//! #     }
//! #     fn recv_from(&self, buf: &mut [u8]) -> sntpc::Result<(usize, SocketAddr)> {
//! #         Ok((0usize, SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), 0)))
//! #     }
//! #     fn set_read_timeout<T>(&self, _arg: T) -> sntpc::Result<()> {
//! #         Ok(())
//! #     }
//! # }
//!
//! fn main() {
//!     let socket =
//!         UdpSocket::bind("0.0.0.0:0").expect("Unable to crate UDP socket");
//!     socket
//!        .set_read_timeout(Some(Duration::from_secs(2)))
//!        .expect("Unable to set UDP socket read timeout");
//!     # #[cfg(all(feature = "std", feature = "sup"))]
//!     let result = sntpc::simple_get_time("time.google.com:123", socket);
//!     # #[cfg(all(feature = "std", feature = "sup"))]
//!     match result {
//!        Ok(time) => {
//!            println!("Got time: {}.{}", time.sec(), sntpc::fraction_to_milliseconds(time.sec_fraction()));
//!        }
//!        Err(err) => println!("Err: {:?}", err),
//!     }
//!  }
//! ```
//!
//! For more complex example with custom timestamp generator and UDP socket implementation, see
//! `examples/smoltcp_request.rs`.
//!
//! For usage SNTP-client in an asynchronous environment, see `examples/tokio.rs`
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "utils")]
pub mod utils;

mod types;
pub use crate::types::*;

#[cfg(feature = "async")]
pub mod async_impl;

use core::fmt::Debug;
use core::iter::Iterator;
use core::marker::Copy;
use core::mem;

pub(crate) mod net {
    #[cfg(not(feature = "std"))]
    pub use no_std_net::{SocketAddr, ToSocketAddrs};

    #[cfg(feature = "std")]
    pub use std::net::{SocketAddr, ToSocketAddrs, UdpSocket};
}

#[cfg(feature = "log")]
use log::debug;

/// Send request to a NTP server with the given address and process the response in a single call
///
/// May be useful under an environment with `std` networking implementation, where all
/// network stuff is hidden within system's kernel. For environment with custom
/// Uses [`NtpUdpSocket`] and [`NtpTimestampGenerator`] trait bounds to allow generic specification
/// of objects that can be used with the library
/// **Args:**
/// - `pool_addrs` - Server's name or IP address with port specification as a string
/// - `socket` - UDP socket object that will be used during NTP request-response
/// communication
/// - `context` - SNTP client context to provide timestamp generation feature
///
/// # Example
///
/// ```rust
/// use sntpc::{self, NtpContext, NtpTimestampGenerator, Result};
/// use std::time::Duration;
/// # #[cfg(not(feature = "std"))]
/// # use no_std_net::{SocketAddr, ToSocketAddrs, IpAddr, Ipv4Addr};
/// # #[cfg(feature = "std")]
/// # use std::net::{SocketAddr, ToSocketAddrs, UdpSocket, IpAddr, Ipv4Addr};
/// # #[cfg(not(feature = "std"))]
/// # #[derive(Debug)]
/// # struct UdpSocket;
/// # #[cfg(not(feature = "std"))]
/// # impl UdpSocket {
/// #     fn bind(addr: &str) -> Result<Self> {
/// #         Ok(UdpSocket)
/// #     }
/// #     fn send_to<T: ToSocketAddrs>(&self, buf: &[u8], dest: T) -> Result<usize> {
/// #        Ok(0usize)
/// #     }
/// #     fn recv_from(&self, buf: &mut [u8]) -> Result<(usize, SocketAddr)> {
/// #        Ok((0usize, SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), 0)))
/// #     }
/// # }
/// // implement required trait on network objects
/// # #[derive(Debug)]
/// # struct UdpSocketWrapper(UdpSocket);
/// #
/// # impl sntpc::NtpUdpSocket for UdpSocketWrapper {
/// #     fn send_to<T: ToSocketAddrs>(
/// #         &self,
/// #         buf: &[u8],
/// #         addr: T,
/// #     ) -> Result<usize> {
/// #         match self.0.send_to(buf, addr) {
/// #             Ok(usize) => Ok(usize),
/// #             Err(_) => Err(sntpc::Error::Network),
/// #         }
/// #     }
/// #
/// #     fn recv_from(&self, buf: &mut [u8]) -> Result<(usize, SocketAddr)> {
/// #         match self.0.recv_from(buf) {
/// #             Ok((size, addr)) => Ok((size, addr)),
/// #             Err(_) => Err(sntpc::Error::Network),
/// #         }
/// #     }
/// # }
/// // implement required trait on the timestamp generator object
/// #[derive(Copy, Clone, Default)]
/// struct StdTimestampGen {
///     duration: Duration,
/// }
///
/// impl NtpTimestampGenerator for StdTimestampGen {
///     fn init(&mut self) {
///         self.duration = std::time::SystemTime::now()
///             .duration_since(std::time::SystemTime::UNIX_EPOCH)
///             .unwrap();
///     }
///
///     fn timestamp_sec(&self) -> u64 {
///         self.duration.as_secs()
///     }
///
///     fn timestamp_subsec_micros(&self) -> u32 {
///         self.duration.subsec_micros()
///     }
/// }
///
/// let ntp_context = NtpContext::new(StdTimestampGen::default());
/// let socket = UdpSocketWrapper(UdpSocket::bind("0.0.0.0:0").expect("something"));
/// # #[cfg(feature = "std")]
/// let result = sntpc::get_time("time.google.com:123", socket, ntp_context);
/// // OR
/// // let result = sntpc::get_time("83.168.200.199:123", socket, context);
///
/// // .. process the result
/// ```
pub fn get_time<A, U, T>(
    pool_addrs: A,
    socket: U,
    context: NtpContext<T>,
) -> Result<NtpResult>
where
    A: net::ToSocketAddrs + Copy + Debug,
    U: NtpUdpSocket + Debug,
    T: NtpTimestampGenerator + Copy,
{
    let result = sntp_send_request(pool_addrs, &socket, context)?;

    sntp_process_response(pool_addrs, &socket, context, result)
}

#[cfg(feature = "std")]
/// Supplementary `get_time` alternative that wraps provided UDP socket into a wrapper type
/// that implements necessary traits for SNTP client proper operation
pub fn simple_get_time<A>(
    pool_addrs: A,
    socket: net::UdpSocket,
) -> Result<NtpResult>
where
    A: net::ToSocketAddrs + Copy + Debug,
{
    let ntp_context = NtpContext::new(StdTimestampGen::default());

    get_time(pool_addrs, socket, ntp_context)
}

/// Send SNTP request to a server
///
/// That function along with the [`sntp_process_response`] is required under an environment(s)
/// where you need to call TCP/IP stack helpers (like `poll`, `wait`, etc.)
/// *Args*:
/// - `dest` - Initial NTP server's address to validate response against
/// - `socket` - Socket reference to use for receiving a NTP response
/// - `context` - SNTP client context
///
/// # Example
///
/// ```
/// use sntpc::{self, NtpContext, NtpTimestampGenerator, Result};
/// # use std::time::Duration;
/// # use std::str::FromStr;
/// # #[cfg(not(feature = "std"))]
/// # use no_std_net::{SocketAddr, ToSocketAddrs, IpAddr, Ipv4Addr};
/// # #[cfg(feature = "std")]
/// # use std::net::{SocketAddr, ToSocketAddrs, UdpSocket, IpAddr, Ipv4Addr};
/// # #[cfg(not(feature = "std"))]
/// # #[derive(Debug)]
/// # struct UdpSocket(u8);
/// # #[cfg(not(feature = "std"))]
/// # impl UdpSocket {
/// #     fn bind(addr: &str) -> Result<Self> {
/// #         Ok(UdpSocket(0))
/// #     }
/// #     fn send_to<T: ToSocketAddrs>(&self, buf: &[u8], dest: T) -> Result<usize> {
/// #        Ok(0usize)
/// #     }
/// #     fn recv_from(&self, buf: &mut [u8]) -> Result<(usize, SocketAddr)> {
/// #        Ok((0usize, SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), 0)))
/// #     }
/// # }
/// // implement required trait on network objects
/// # #[derive(Debug)]
/// # struct UdpSocketWrapper(UdpSocket);
///
/// # impl sntpc::NtpUdpSocket for UdpSocketWrapper {
/// #     fn send_to<T: ToSocketAddrs>(
/// #         &self,
/// #         buf: &[u8],
/// #         addr: T,
/// #     ) -> Result<usize> {
/// #         match self.0.send_to(buf, addr) {
/// #             Ok(usize) => Ok(usize),
/// #             Err(_) => Err(sntpc::Error::Network),
/// #         }
/// #     }
/// #
/// #     fn recv_from(&self, buf: &mut [u8]) -> Result<(usize, SocketAddr)> {
/// #         match self.0.recv_from(buf) {
/// #             Ok((size, addr)) => Ok((size, addr)),
/// #             Err(_) => Err(sntpc::Error::Network),
/// #         }
/// #     }
/// # }
/// // implement required trait on the timestamp generator object
/// # #[derive(Copy, Clone, Default)]
/// # struct StdTimestampGen {
/// #     duration: Duration,
/// # }
/// #
/// # impl NtpTimestampGenerator for StdTimestampGen {
/// #     fn init(&mut self) {
/// #         self.duration = std::time::SystemTime::now()
/// #             .duration_since(std::time::SystemTime::UNIX_EPOCH)
/// #             .unwrap();
/// #     }
/// #
/// #     fn timestamp_sec(&self) -> u64 {
/// #         self.duration.as_secs()
/// #     }
/// #
/// #     fn timestamp_subsec_micros(&self) -> u32 {
/// #         self.duration.subsec_micros()
/// #     }
/// # }
/// #
/// # let ntp_context = NtpContext::new(StdTimestampGen::default());
/// # let socket = UdpSocketWrapper(UdpSocket::bind("0.0.0.0:0").expect("something"));
/// // "time.google.com:123" string here used for the sake of simplicity. In the real app
/// // you would want to fix destination address, since string hostname may resolve to
/// // different IP addresses
/// # #[cfg(feature = "std")]
/// let result = sntpc::sntp_send_request("time.google.com:123", &socket, ntp_context);
/// ```
pub fn sntp_send_request<A, U, T>(
    dest: A,
    socket: &U,
    context: NtpContext<T>,
) -> Result<SendRequestResult>
where
    A: net::ToSocketAddrs + Debug,
    U: NtpUdpSocket + Debug,
    T: NtpTimestampGenerator + Copy,
{
    #[cfg(feature = "log")]
    debug!("Address: {:?}, Socket: {:?}", dest, *socket);
    let request = NtpPacket::new(context.timestamp_gen);

    send_request(dest, &request, socket)?;
    Ok(SendRequestResult::from(request))
}

/// Process SNTP response from a server
///
/// That function along with the [`sntp_send_request`] is required under an environment(s)
/// where you need to call TCP/IP stack helpers (like `poll`, `wait`, etc.)
/// *Args*:
/// - `dest` - NTP server's address to send request to
/// - `socket` - Socket reference to use for sending a NTP request
/// - `context` - SNTP client context
/// - `send_req_result` - send request result that obtained after [`sntp_send_request`] call
///
/// # Example
/// ```
/// use sntpc::{self, NtpContext, NtpTimestampGenerator, Result};
/// # use std::time::Duration;
/// # use std::str::FromStr;
/// # #[cfg(not(feature = "std"))]
/// # use no_std_net::{SocketAddr, ToSocketAddrs, IpAddr, Ipv4Addr};
/// # #[cfg(feature = "std")]
/// # use std::net::{SocketAddr, ToSocketAddrs, UdpSocket, IpAddr, Ipv4Addr};
/// # #[cfg(not(feature = "std"))]
/// # #[derive(Debug, Clone)]
/// # struct UdpSocket(u8);
/// # #[cfg(not(feature = "std"))]
/// # impl UdpSocket {
/// #     fn bind(addr: &str) -> Result<Self> {
/// #         Ok(UdpSocket(0))
/// #     }
/// #     fn send_to<T: ToSocketAddrs>(&self, buf: &[u8], dest: T) -> Result<usize> {
/// #        Ok(0usize)
/// #     }
/// #     fn recv_from(&self, buf: &mut [u8]) -> Result<(usize, SocketAddr)> {
/// #        Ok((0usize, SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), 0)))
/// #     }
/// # }
/// // implement required trait on network objects
/// # #[derive(Debug)]
/// # struct UdpSocketWrapper(UdpSocket);
/// #
/// # impl sntpc::NtpUdpSocket for UdpSocketWrapper {
/// #     fn send_to<T: ToSocketAddrs>(
/// #         &self,
/// #         buf: &[u8],
/// #         addr: T,
/// #     ) -> Result<usize> {
/// #         match self.0.send_to(buf, addr) {
/// #             Ok(usize) => Ok(usize),
/// #             Err(_) => Err(sntpc::Error::Network),
/// #         }
/// #     }
/// #
/// #     fn recv_from(&self, buf: &mut [u8]) -> Result<(usize, SocketAddr)> {
/// #         match self.0.recv_from(buf) {
/// #             Ok((size, addr)) => Ok((size, addr)),
/// #             Err(_) => Err(sntpc::Error::Network),
/// #         }
/// #     }
/// # }
/// // implement required trait on the timestamp generator object
/// # #[derive(Copy, Clone, Default)]
/// # struct StdTimestampGen {
/// #     duration: Duration,
/// # }
/// #
/// # impl NtpTimestampGenerator for StdTimestampGen {
/// #     fn init(&mut self) {
/// #         self.duration = std::time::SystemTime::now()
/// #             .duration_since(std::time::SystemTime::UNIX_EPOCH)
/// #             .unwrap();
/// #     }
/// #
/// #     fn timestamp_sec(&self) -> u64 {
/// #         self.duration.as_secs()
/// #     }
/// #
/// #     fn timestamp_subsec_micros(&self) -> u32 {
/// #         self.duration.subsec_micros()
/// #     }
/// # }
/// #
/// # let ntp_context = NtpContext::new(StdTimestampGen::default());
/// # let socket = UdpSocketWrapper(UdpSocket::bind("0.0.0.0:0").expect("something"));
/// // "time.google.com:123" string here used for the sake of simplicity. In the real app
/// // you would want to fix destination address, since string hostname may resolve to
/// // different IP addresses
/// # #[cfg(feature = "std")]
/// if let Ok(result) = sntpc::sntp_send_request("time.google.com:123", &socket, ntp_context) {
///     let time = sntpc::sntp_process_response("time.google.com:123", &socket, ntp_context, result);
/// }
/// ```
pub fn sntp_process_response<A, U, T>(
    dest: A,
    socket: &U,
    mut context: NtpContext<T>,
    send_req_result: SendRequestResult,
) -> Result<NtpResult>
where
    A: net::ToSocketAddrs + Debug,
    U: NtpUdpSocket + Debug,
    T: NtpTimestampGenerator + Copy,
{
    let mut response_buf = RawNtpPacket::default();
    let (response, src) = socket.recv_from(response_buf.0.as_mut())?;
    context.timestamp_gen.init();
    let recv_timestamp = get_ntp_timestamp(context.timestamp_gen);
    #[cfg(feature = "log")]
    debug!("Response: {}", response);

    match dest.to_socket_addrs() {
        Err(_) => return Err(Error::AddressResolve),
        Ok(mut it) => {
            if !it.any(|addr| addr == src) {
                return Err(Error::ResponseAddressMismatch);
            }
        }
    }

    if response != mem::size_of::<NtpPacket>() {
        return Err(Error::IncorrectPayload);
    }

    let result =
        process_response(send_req_result, response_buf, recv_timestamp);

    if let Ok(_r) = &result {
        #[cfg(feature = "log")]
        debug!("{:?}", _r);
    }

    result
}

fn send_request<A: net::ToSocketAddrs, U: NtpUdpSocket>(
    dest: A,
    req: &NtpPacket,
    socket: &U,
) -> core::result::Result<(), Error> {
    let buf = RawNtpPacket::from(req);

    match socket.send_to(&buf.0, dest) {
        Ok(size) => {
            if size == buf.0.len() {
                Ok(())
            } else {
                Err(Error::Network)
            }
        }
        Err(_) => Err(Error::Network),
    }
}

fn process_response(
    send_req_result: SendRequestResult,
    resp: RawNtpPacket,
    recv_timestamp: u64,
) -> Result<NtpResult> {
    const SNTP_UNICAST: u8 = 4;
    const SNTP_BROADCAST: u8 = 5;
    const LI_MAX_VALUE: u8 = 3;
    let mut packet = NtpPacket::from(resp);

    convert_from_network(&mut packet);
    #[cfg(feature = "log")]
    debug_ntp_packet(&packet, recv_timestamp);

    if send_req_result.originate_timestamp != packet.origin_timestamp {
        return Err(Error::IncorrectOriginTimestamp);
    }
    // Shift is 0
    let mode = shifter(packet.li_vn_mode, MODE_MASK, MODE_SHIFT);
    let li = shifter(packet.li_vn_mode, LI_MASK, LI_SHIFT);
    let resp_version = shifter(packet.li_vn_mode, VERSION_MASK, VERSION_SHIFT);
    let req_version =
        shifter(send_req_result.version, VERSION_MASK, VERSION_SHIFT);

    if mode != SNTP_UNICAST && mode != SNTP_BROADCAST {
        return Err(Error::IncorrectMode);
    }

    if li > LI_MAX_VALUE {
        return Err(Error::IncorrectLeapIndicator);
    }

    if req_version != resp_version {
        return Err(Error::IncorrectResponseVersion);
    }

    if packet.stratum == 0 {
        return Err(Error::IncorrectStratumHeaders);
    }
    // System clock offset:
    // theta = T(B) - T(A) = 1/2 * [(T2-T1) + (T3-T4)]
    // Round-trip delay:
    // delta = T(ABA) = (T4-T1) - (T3-T2).
    // where:
    // - T1 = client's TX timestamp
    // - T2 = server's RX timestamp
    // - T3 = server's TX timestamp
    // - T4 = client's RX timestamp
    let t1 = packet.origin_timestamp;
    let t2 = packet.recv_timestamp;
    let t3 = packet.tx_timestamp;
    let t4 = recv_timestamp;
    let units = Units::Microseconds;
    let roundtrip = roundtrip_calculate(t1, t2, t3, t4, units);
    let offset = offset_calculate(t1, t2, t3, t4, units);
    let timestamp = NtpTimestamp::from(packet.tx_timestamp);

    #[cfg(feature = "log")]
    debug!(
        "Roundtrip delay: {} {}. Offset: {} {}",
        roundtrip, units, offset, units
    );

    Ok(NtpResult::new(
        timestamp.seconds as u32,
        timestamp.seconds_fraction as u32,
        roundtrip,
        offset,
        packet.stratum,
        packet.precision,
    ))
}

fn shifter(val: u8, mask: u8, shift: u8) -> u8 {
    (val & mask) >> shift
}

fn convert_from_network(packet: &mut NtpPacket) {
    fn ntohl<T: NtpNum>(val: T) -> T::Type {
        val.ntohl()
    }

    packet.root_delay = ntohl(packet.root_delay);
    packet.root_dispersion = ntohl(packet.root_dispersion);
    packet.ref_id = ntohl(packet.ref_id);
    packet.ref_timestamp = ntohl(packet.ref_timestamp);
    packet.origin_timestamp = ntohl(packet.origin_timestamp);
    packet.recv_timestamp = ntohl(packet.recv_timestamp);
    packet.tx_timestamp = ntohl(packet.tx_timestamp);
}

fn convert_delays(sec: u64, fraction: u64, units: u64) -> u64 {
    sec * units + fraction * units / u32::MAX as u64
}

fn roundtrip_calculate(
    t1: u64,
    t2: u64,
    t3: u64,
    t4: u64,
    units: Units,
) -> u64 {
    let delta = t4.wrapping_sub(t1).wrapping_sub(t3.wrapping_sub(t2));
    let delta_sec = (delta & SECONDS_MASK) >> 32;
    let delta_sec_fraction = delta & SECONDS_FRAC_MASK;

    match units {
        Units::Milliseconds => {
            convert_delays(delta_sec, delta_sec_fraction, MSEC_IN_SEC as u64)
        }
        Units::Microseconds => {
            convert_delays(delta_sec, delta_sec_fraction, USEC_IN_SEC as u64)
        }
    }
}

fn offset_calculate(t1: u64, t2: u64, t3: u64, t4: u64, units: Units) -> i64 {
    let theta = (t2.wrapping_sub(t1) as i64)
        .wrapping_add(t3.wrapping_sub(t4) as i64)
        / 2;
    let theta_sec = (theta.unsigned_abs() & SECONDS_MASK) >> 32;
    let theta_sec_fraction = theta.unsigned_abs() & SECONDS_FRAC_MASK;

    match units {
        Units::Milliseconds => {
            convert_delays(theta_sec, theta_sec_fraction, MSEC_IN_SEC as u64)
                as i64
                * theta.signum()
        }
        Units::Microseconds => {
            convert_delays(theta_sec, theta_sec_fraction, USEC_IN_SEC as u64)
                as i64
                * theta.signum()
        }
    }
}

#[cfg(feature = "log")]
fn debug_ntp_packet(packet: &NtpPacket, _recv_timestamp: u64) {
    let mode = shifter(packet.li_vn_mode, MODE_MASK, MODE_SHIFT);
    let version = shifter(packet.li_vn_mode, VERSION_MASK, VERSION_SHIFT);
    let li = shifter(packet.li_vn_mode, LI_MASK, LI_SHIFT);

    use core::str;

    let delimiter_gen = || unsafe { str::from_utf8_unchecked(&[b'='; 64]) };

    debug!("{}", delimiter_gen());
    debug!("| Mode:\t\t{}", mode);
    debug!("| Version:\t{}", version);
    debug!("| Leap:\t\t{}", li);
    debug!("| Stratum:\t{}", packet.stratum);
    debug!("| Poll:\t\t{}", packet.poll);
    debug!("| Precision:\t\t{}", packet.precision);
    debug!("| Root delay:\t\t{}", packet.root_delay);
    debug!("| Root dispersion:\t{}", packet.root_dispersion);
    debug!(
        "| Reference ID:\t\t{}",
        str::from_utf8(&packet.ref_id.to_be_bytes()).unwrap_or("")
    );
    debug!(
        "| Origin timestamp    (client):\t{:>16}",
        packet.origin_timestamp
    );
    debug!(
        "| Receive timestamp   (server):\t{:>16}",
        packet.recv_timestamp
    );
    debug!(
        "| Transmit timestamp  (server):\t{:>16}",
        packet.tx_timestamp
    );
    debug!("| Receive timestamp   (client):\t{:>16}", _recv_timestamp);
    debug!(
        "| Reference timestamp (server):\t{:>16}",
        packet.ref_timestamp
    );
    debug!("{}", delimiter_gen());
}

fn get_ntp_timestamp<T: NtpTimestampGenerator>(timestamp_gen: T) -> u64 {
    ((timestamp_gen.timestamp_sec()
        + (u64::from(NtpPacket::NTP_TIMESTAMP_DELTA)))
        << 32)
        + timestamp_gen.timestamp_subsec_micros() as u64 * u32::MAX as u64
            / USEC_IN_SEC as u64
}

/// Convert second fraction value to milliseconds value
pub fn fraction_to_milliseconds(sec_fraction: u32) -> u32 {
    (u64::from(sec_fraction) * u64::from(MSEC_IN_SEC) / u64::from(u32::MAX))
        as u32
}

/// Convert second fraction value to microseconds value
pub fn fraction_to_microseconds(sec_fraction: u32) -> u32 {
    (u64::from(sec_fraction) * u64::from(USEC_IN_SEC) / u64::from(u32::MAX))
        as u32
}

/// Convert second fraction value to nanoseconds value
pub fn fraction_to_nanoseconds(sec_fraction: u32) -> u32 {
    (u64::from(sec_fraction) * u64::from(NSEC_IN_SEC) / u64::from(u32::MAX))
        as u32
}

/// Convert second fraction value to picoseconds value
pub fn fraction_to_picoseconds(sec_fraction: u32) -> u64 {
    (u128::from(sec_fraction) * u128::from(PSEC_IN_SEC) / u128::from(u32::MAX))
        as u64
}

#[cfg(test)]
mod sntpc_ntp_result_tests {
    use crate::{
        fraction_to_microseconds, fraction_to_milliseconds,
        fraction_to_nanoseconds, fraction_to_picoseconds, NtpResult,
    };

    #[test]
    fn test_ntp_result() {
        let result1 = NtpResult::new(0, 0, 0, 0, 1, -2);

        assert_eq!(0, result1.sec());
        assert_eq!(0, result1.sec_fraction());
        assert_eq!(0, result1.roundtrip());
        assert_eq!(0, result1.offset());
        assert_eq!(1, result1.stratum());
        assert_eq!(-2, result1.precision());

        let result2 = NtpResult::new(1, 2, 3, 4, 5, -23);

        assert_eq!(1, result2.sec());
        assert_eq!(2, result2.sec_fraction());
        assert_eq!(3, result2.roundtrip());
        assert_eq!(4, result2.offset());
        assert_eq!(5, result2.stratum());
        assert_eq!(-23, result2.precision());

        let result3 =
            NtpResult::new(u32::MAX - 1, u32::MAX, u64::MAX, i64::MAX, 1, -127);

        assert_eq!(u32::MAX, result3.sec());
        assert_eq!(0, result3.sec_fraction());
        assert_eq!(u64::MAX, result3.roundtrip());
        assert_eq!(i64::MAX, result3.offset());
        assert_eq!(-127, result3.precision());
    }

    #[test]
    fn test_ntp_fraction_overflow_result() {
        let result = NtpResult::new(0, u32::MAX, 0, 0, 1, -19);
        assert_eq!(1, result.sec());
        assert_eq!(0, result.sec_fraction());
        assert_eq!(0, result.roundtrip());
        assert_eq!(0, result.offset());

        let result = NtpResult::new(u32::MAX - 1, u32::MAX, 0, 0, 1, -17);
        assert_eq!(u32::MAX, result.sec());
        assert_eq!(0, result.sec_fraction());
        assert_eq!(0, result.roundtrip());
        assert_eq!(0, result.offset());
    }

    #[test]
    fn test_conversion_to_ms() {
        let result = NtpResult::new(0, u32::MAX - 1, 0, 0, 1, 0);
        let milliseconds = fraction_to_milliseconds(result.seconds_fraction);
        assert_eq!(999u32, milliseconds);

        let result = NtpResult::new(0, 0, 0, 0, 1, 0);
        let milliseconds = fraction_to_milliseconds(result.seconds_fraction);
        assert_eq!(0u32, milliseconds);
    }

    #[test]
    fn test_conversion_to_us() {
        let result = NtpResult::new(0, u32::MAX - 1, 0, 0, 1, 0);
        let microseconds = fraction_to_microseconds(result.seconds_fraction);
        assert_eq!(999999u32, microseconds);

        let result = NtpResult::new(0, 0, 0, 0, 1, 0);
        let microseconds = fraction_to_microseconds(result.seconds_fraction);
        assert_eq!(0u32, microseconds);
    }

    #[test]
    fn test_conversion_to_ns() {
        let result = NtpResult::new(0, u32::MAX - 1, 0, 0, 1, 0);
        let nanoseconds = fraction_to_nanoseconds(result.seconds_fraction);
        assert_eq!(999999999u32, nanoseconds);

        let result = NtpResult::new(0, 0, 0, 0, 1, 0);
        let nanoseconds = fraction_to_nanoseconds(result.seconds_fraction);
        assert_eq!(0u32, nanoseconds);
    }

    #[test]
    fn test_conversion_to_ps() {
        let result = NtpResult::new(0, u32::MAX - 1, 0, 0, 1, 0);
        let picoseconds = fraction_to_picoseconds(result.seconds_fraction);
        assert_eq!(999999999767u64, picoseconds);

        let result = NtpResult::new(0, 1, 0, 0, 1, 0);
        let picoseconds = fraction_to_picoseconds(result.seconds_fraction);
        assert_eq!(232u64, picoseconds);

        let result = NtpResult::new(0, 0, 0, 0, 1, 0);
        let picoseconds = fraction_to_picoseconds(result.seconds_fraction);
        assert_eq!(0u64, picoseconds);
    }
}

#[cfg(all(test, feature = "std"))]
mod sntpc_tests {
    use crate::{get_time, Error, NtpContext, StdTimestampGen, Units};
    use std::net::UdpSocket;

    #[test]
    fn test_ntp_request_sntpv4_supported() {
        let context = NtpContext::new(StdTimestampGen::default());
        let pools = [
            "pool.ntp.org:123",
            "time.google.com:123",
            "time.apple.com:123",
            "time.cloudflare.com:123",
            "time.facebook.com:123",
        ];

        for pool in &pools {
            let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
            socket
                .set_read_timeout(Some(std::time::Duration::from_secs(2)))
                .expect("Unable to set up socket timeout");

            let result = get_time(pool, socket, context);

            assert!(
                result.is_ok(),
                "{} is bad - {:?}",
                pool,
                result.unwrap_err()
            );
            assert_ne!(result.unwrap().seconds, 0);
        }
    }

    #[test]
    fn test_ntp_request_sntpv3_not_supported() {
        let context = NtpContext::new(StdTimestampGen::default());

        let pools = ["time.nist.gov:123", "time.windows.com:123"];

        for pool in &pools {
            let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
            socket
                .set_read_timeout(Some(std::time::Duration::from_secs(2)))
                .expect("Unable to set up socket timeout");
            let result = get_time(pool, socket, context);
            assert!(result.is_err(), "{} is ok", pool);
            assert_eq!(result.unwrap_err(), Error::IncorrectResponseVersion);
        }
    }

    #[test]
    fn test_invalid_addrs_ntp_request() {
        let context = NtpContext::new(StdTimestampGen::default());
        let pool = "asdf.asdf.asdf:123";
        let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
        socket
            .set_read_timeout(Some(std::time::Duration::from_secs(2)))
            .expect("Unable to set up socket timeout");

        let result = get_time(pool, socket, context);
        assert!(result.is_err(), "{} is ok", pool);
        assert_eq!(result.unwrap_err(), Error::Network);
    }

    #[test]
    fn test_units_str_representation() {
        assert_eq!(format!("{}", Units::Milliseconds), "ms");
        assert_eq!(format!("{}", Units::Microseconds), "us");
    }
}