1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{errors::SynthesisError, ConstraintSystem, Index, LinearCombination, OptionalVec, Variable};
use snarkvm_fields::Field;

use cfg_if::cfg_if;
use fxhash::{FxBuildHasher, FxHashMap};
use indexmap::{map::Entry, IndexMap, IndexSet};
use itertools::Itertools;

#[derive(Debug, Clone)]
enum NamedObject {
    Constraint(usize),
    Var(Variable),
    // contains the list of named objects that belong to it
    Namespace(Namespace),
}

#[derive(Debug, Clone, Default)]
struct Namespace {
    children: Vec<NamedObject>,
    idx: NamespaceIndex,
}

impl Namespace {
    fn push(&mut self, child: NamedObject) {
        self.children.push(child);
    }
}

type InternedField = usize;
type InternedPathSegment = usize;
type NamespaceIndex = usize;

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct InternedPath {
    parent_namespace: NamespaceIndex,
    last_segment: InternedPathSegment,
}

#[derive(PartialEq, Eq, Hash)]
pub struct TestConstraint {
    interned_path: InternedPath,
    a: Vec<(Variable, InternedField)>,
    b: Vec<(Variable, InternedField)>,
    c: Vec<(Variable, InternedField)>,
}

#[derive(Default, Debug)]
pub struct CurrentNamespace {
    segments: Vec<InternedPathSegment>,
    indices: Vec<NamespaceIndex>,
}

impl CurrentNamespace {
    fn idx(&self) -> usize {
        self.indices.last().copied().unwrap_or(0)
    }

    fn pop(&mut self) {
        assert!(self.segments.pop().is_some());
        assert!(self.indices.pop().is_some());
    }
}

/// Constraint system for testing purposes.
pub struct TestConstraintSystem<F: Field> {
    // used to intern full paths in test scenarios, for get and set purposes
    interned_full_paths: FxHashMap<Vec<InternedPathSegment>, InternedPath>,
    // used to intern namespace segments
    interned_path_segments: IndexSet<String, FxBuildHasher>,
    // used to intern fields belonging to F
    interned_fields: IndexSet<F, FxBuildHasher>,
    // contains named objects bound to their (interned) paths; the indices are
    // used for NamespaceIndex lookups
    named_objects: IndexMap<InternedPath, NamedObject, FxBuildHasher>,
    // a stack of current path's segments and the index of the current path's
    // index in the named_objects map
    current_namespace: CurrentNamespace,
    // the list of currently applicable constraints
    constraints: OptionalVec<TestConstraint>,
    // the list of currently applicable input variables
    public_variables: OptionalVec<InternedField>,
    // the list of currently applicable auxiliary variables
    private_variables: OptionalVec<InternedField>,
}

impl<F: Field> Default for TestConstraintSystem<F> {
    fn default() -> Self {
        let mut interned_path_segments = IndexSet::with_hasher(FxBuildHasher::default());
        let path_segment = "ONE".to_owned();
        let interned_path_segment = interned_path_segments.insert_full(path_segment).0;
        let interned_path = InternedPath {
            parent_namespace: 0,
            last_segment: interned_path_segment,
        };

        cfg_if! {
            if #[cfg(debug_assertions)] {
                let mut interned_full_paths = FxHashMap::default();
                interned_full_paths.insert(vec![interned_path_segment], interned_path);
            } else {
                let interned_full_paths = FxHashMap::default();
            }
        }

        let mut named_objects = IndexMap::with_hasher(FxBuildHasher::default());
        named_objects.insert_full(interned_path, NamedObject::Var(TestConstraintSystem::<F>::one()));

        let mut interned_fields = IndexSet::with_hasher(FxBuildHasher::default());
        let interned_field = interned_fields.insert_full(F::one()).0;

        let mut inputs: OptionalVec<InternedField> = Default::default();
        inputs.insert(interned_field);

        let constraints = OptionalVec::default();

        TestConstraintSystem {
            interned_full_paths,
            interned_fields,
            interned_path_segments,
            named_objects,
            current_namespace: Default::default(),
            constraints,
            public_variables: inputs,
            private_variables: Default::default(),
        }
    }
}

impl<F: Field> TestConstraintSystem<F> {
    pub fn new() -> Self {
        Self::default()
    }

    #[inline]
    fn intern_path(&self, path: &str) -> InternedPath {
        let mut vec = vec![];

        for segment in path.split('/') {
            vec.push(self.interned_path_segments.get_index_of(segment).unwrap());
        }

        *self.interned_full_paths.get(&vec).unwrap()
    }

    fn unintern_path(&self, interned_path: InternedPath) -> String {
        let last_segment = self
            .interned_path_segments
            .get_index(interned_path.last_segment)
            .unwrap();
        let mut reversed_uninterned_segments = vec![last_segment];

        let mut parent_ns = interned_path.parent_namespace;
        while parent_ns != 0 {
            let interned_parent_ns = self.named_objects.get_index(parent_ns).unwrap().0;
            let parent_segment = self
                .interned_path_segments
                .get_index(interned_parent_ns.last_segment)
                .unwrap();
            reversed_uninterned_segments.push(parent_segment);
            parent_ns = interned_parent_ns.parent_namespace;
        }

        let segments = reversed_uninterned_segments.into_iter().map(|s| s.as_str()).rev();
        Itertools::intersperse(segments, "/").collect()
    }

    pub fn print_named_objects(&self) {
        for TestConstraint { interned_path, .. } in self.constraints.iter() {
            println!("{}", self.unintern_path(*interned_path));
        }
    }

    fn eval_lc(&self, terms: &[(Variable, InternedField)]) -> F {
        let mut acc = F::zero();

        for &(var, interned_coeff) in terms {
            let interned_tmp = match var.get_unchecked() {
                Index::Public(index) => self.public_variables[index],
                Index::Private(index) => self.private_variables[index],
            };
            let mut tmp = *self.interned_fields.get_index(interned_tmp).unwrap();
            let coeff = self.interned_fields.get_index(interned_coeff).unwrap();

            tmp.mul_assign(coeff);
            acc.add_assign(tmp);
        }

        acc
    }

    pub fn which_is_unsatisfied(&self) -> Option<String> {
        for TestConstraint { interned_path, a, b, c } in self.constraints.iter() {
            let mut a = self.eval_lc(a.as_ref());
            let b = self.eval_lc(b.as_ref());
            let c = self.eval_lc(c.as_ref());

            a.mul_assign(&b);

            if a != c {
                return Some(self.unintern_path(*interned_path));
            }
        }

        None
    }

    #[inline]
    pub fn is_satisfied(&self) -> bool {
        self.which_is_unsatisfied().is_none()
    }

    #[inline]
    pub fn num_constraints(&self) -> usize {
        self.constraints.len()
    }

    pub fn set(&mut self, path: &str, to: F) {
        let interned_path = self.intern_path(path);
        let interned_field = self.interned_fields.insert_full(to).0;

        match self.named_objects.get(&interned_path) {
            Some(&NamedObject::Var(ref v)) => match v.get_unchecked() {
                Index::Public(index) => self.public_variables[index] = interned_field,
                Index::Private(index) => self.private_variables[index] = interned_field,
            },
            Some(e) => panic!(
                "tried to set path `{}` to value, but `{:?}` already exists there.",
                path, e
            ),
            _ => panic!("no variable exists at path: {}", path),
        }
    }

    pub fn get(&mut self, path: &str) -> F {
        let interned_path = self.intern_path(path);

        let interned_field = match self.named_objects.get(&interned_path) {
            Some(&NamedObject::Var(ref v)) => match v.get_unchecked() {
                Index::Public(index) => self.public_variables[index],
                Index::Private(index) => self.private_variables[index],
            },
            Some(e) => panic!(
                "tried to get value of path `{}`, but `{:?}` exists there (not a variable)",
                path, e
            ),
            _ => panic!("no variable exists at path: {}", path),
        };

        *self.interned_fields.get_index(interned_field).unwrap()
    }

    #[inline]
    fn set_named_obj(&mut self, interned_path: InternedPath, to: NamedObject) -> NamespaceIndex {
        match self.named_objects.entry(interned_path) {
            Entry::Vacant(e) => {
                let ns_idx = e.index();
                e.insert(to);
                ns_idx
            }
            Entry::Occupied(e) => {
                let interned_segments = e.remove_entry().0;
                panic!(
                    "tried to create object at existing path: {}",
                    self.unintern_path(interned_segments)
                );
            }
        }
    }

    #[inline]
    fn compute_path(&mut self, new_segment: &str) -> InternedPath {
        let (interned_segment, new) = if let Some(index) = self.interned_path_segments.get_index_of(new_segment) {
            (index, false)
        } else {
            self.interned_path_segments.insert_full(new_segment.to_owned())
        };

        // only perform the check for segments not seen before
        assert!(!new || !new_segment.contains('/'), "'/' is not allowed in names");

        let interned_path = InternedPath {
            parent_namespace: self.current_namespace.idx(),
            last_segment: interned_segment,
        };

        cfg_if! {
            if #[cfg(debug_assertions)] {
                let mut full_path = self.current_namespace.segments.clone();
                full_path.push(interned_segment);
                self.interned_full_paths.insert(full_path, interned_path);
            }
        }

        interned_path
    }

    #[cfg(not(debug_assertions))]
    fn purge_namespace(&mut self, namespace: Namespace) {
        for child_obj in namespace.children {
            match child_obj {
                NamedObject::Var(var) => match var.get_unchecked() {
                    Index::Private(idx) => {
                        self.private_variables.remove(idx);
                    }
                    Index::Public(idx) => {
                        self.public_variables.remove(idx);
                    }
                },
                NamedObject::Constraint(idx) => {
                    self.constraints.remove(idx);
                }
                NamedObject::Namespace(children) => {
                    self.purge_namespace(children);
                }
            }
            self.named_objects.swap_remove_index(namespace.idx);
        }
    }

    #[inline]
    fn register_object_in_namespace(&mut self, named_obj: NamedObject) {
        if let NamedObject::Namespace(ref mut ns) = self
            .named_objects
            .get_index_mut(self.current_namespace.idx())
            .unwrap()
            .1
        {
            ns.push(named_obj);
        }
    }
}

impl<F: Field> ConstraintSystem<F> for TestConstraintSystem<F> {
    type Root = Self;

    fn alloc<Fn, A, AR>(&mut self, annotation: A, f: Fn) -> Result<Variable, SynthesisError>
    where
        Fn: FnOnce() -> Result<F, SynthesisError>,
        A: FnOnce() -> AR,
        AR: AsRef<str>,
    {
        let interned_path = self.compute_path(annotation().as_ref());
        let interned_field = self.interned_fields.insert_full(f()?).0;
        let index = self.private_variables.insert(interned_field);
        let var = Variable::new_unchecked(Index::Private(index));
        let named_obj = NamedObject::Var(var);
        self.register_object_in_namespace(named_obj.clone());
        self.set_named_obj(interned_path, named_obj);

        Ok(var)
    }

    fn alloc_input<Fn, A, AR>(&mut self, annotation: A, f: Fn) -> Result<Variable, SynthesisError>
    where
        Fn: FnOnce() -> Result<F, SynthesisError>,
        A: FnOnce() -> AR,
        AR: AsRef<str>,
    {
        let interned_path = self.compute_path(annotation().as_ref());
        let interned_field = self.interned_fields.insert_full(f()?).0;
        let index = self.public_variables.insert(interned_field);
        let var = Variable::new_unchecked(Index::Public(index));
        let named_obj = NamedObject::Var(var);
        self.register_object_in_namespace(named_obj.clone());
        self.set_named_obj(interned_path, named_obj);

        Ok(var)
    }

    fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
    where
        A: FnOnce() -> AR,
        AR: AsRef<str>,
        LA: FnOnce(LinearCombination<F>) -> LinearCombination<F>,
        LB: FnOnce(LinearCombination<F>) -> LinearCombination<F>,
        LC: FnOnce(LinearCombination<F>) -> LinearCombination<F>,
    {
        let interned_path = self.compute_path(annotation().as_ref());
        let index = self.constraints.next_idx();
        let named_obj = NamedObject::Constraint(index);
        self.register_object_in_namespace(named_obj.clone());
        self.set_named_obj(interned_path, named_obj);

        let mut intern_fields = |uninterned: Vec<(Variable, F)>| -> Vec<(Variable, InternedField)> {
            uninterned
                .into_iter()
                .map(|(var, field)| {
                    let interned_field = self.interned_fields.insert_full(field).0;
                    (var, interned_field)
                })
                .collect()
        };

        let a = intern_fields(a(LinearCombination::zero()).0);
        let b = intern_fields(b(LinearCombination::zero()).0);
        let c = intern_fields(c(LinearCombination::zero()).0);

        self.constraints.insert(TestConstraint { interned_path, a, b, c });
    }

    fn push_namespace<NR: AsRef<str>, N: FnOnce() -> NR>(&mut self, name_fn: N) {
        let name = name_fn();
        let interned_path = self.compute_path(name.as_ref());
        let new_segment = interned_path.last_segment;
        let named_obj = NamedObject::Namespace(Default::default());
        self.register_object_in_namespace(named_obj.clone());
        let namespace_idx = self.set_named_obj(interned_path, named_obj);
        if let NamedObject::Namespace(ref mut ns) = self.named_objects[namespace_idx] {
            ns.idx = namespace_idx;
        };

        self.current_namespace.segments.push(new_segment);
        self.current_namespace.indices.push(namespace_idx);
    }

    #[cfg(not(debug_assertions))]
    fn pop_namespace(&mut self) {
        let namespace = if let NamedObject::Namespace(no) = self
            .named_objects
            .swap_remove_index(self.current_namespace.idx())
            .unwrap()
            .1
        {
            no
        } else {
            unreachable!()
        };

        // remove object belonging to the popped namespace
        self.purge_namespace(namespace);

        // update the current namespace
        self.current_namespace.pop();
    }

    #[cfg(debug_assertions)]
    fn pop_namespace(&mut self) {
        // don't perform a full cleanup in test conditions, so that all the variables,
        // constraints and namespace indices remain available throughout the tests

        self.current_namespace.pop();
    }

    #[inline]
    fn get_root(&mut self) -> &mut Self::Root {
        self
    }

    #[inline]
    fn num_constraints(&self) -> usize {
        self.num_constraints()
    }

    #[inline]
    fn num_public_variables(&self) -> usize {
        self.public_variables.len()
    }

    #[inline]
    fn num_private_variables(&self) -> usize {
        self.private_variables.len()
    }
}