1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use std::iter;

use snarkvm_fields::{FieldParameters, PrimeField};
use snarkvm_r1cs::{Assignment, ConstraintSystem, LinearCombination};

use crate::{
    bits::boolean::{AllocatedBit, Boolean},
    errors::SignedIntegerError,
    integers::int::*,
    traits::{
        alloc::AllocGadget,
        bits::{RippleCarryAdder, SignExtend},
        integers::{Integer, Mul},
        select::CondSelectGadget,
    },
};

macro_rules! mul_int_impl {
    ($($gadget: ident)*) => ($(
        /// Bitwise multiplication of two signed integer objects.
        impl<F: PrimeField> Mul<F> for $gadget {

            type ErrorType = SignedIntegerError;

            fn mul<CS: ConstraintSystem<F>>(&self, mut cs: CS, other: &Self) -> Result<Self, Self::ErrorType> {
                // pseudocode:
                //
                // res = 0;
                // for (i, bit) in other.bits.enumerate() {
                //   shifted_self = self << i;
                //
                //   if bit {
                //     res += shifted_self;
                //   }
                // }
                // return res


                // Conditionally select constant result
                let is_constant = Boolean::constant(Self::result_is_constant(&self, &other));
                let allocated_false = Boolean::from(AllocatedBit::alloc(&mut cs.ns(|| "false"), || Ok(false)).unwrap());
                let false_bit = Boolean::conditionally_select(
                    &mut cs.ns(|| "constant_or_allocated_false"),
                    &is_constant,
                    &Boolean::constant(false),
                    &allocated_false,
                )?;

                // Sign extend to double precision
                let size = <$gadget as Integer>::SIZE * 2;

                let a = Boolean::sign_extend(&self.bits, size);
                let b = Boolean::sign_extend(&other.bits, size);

                let mut bits = vec![false_bit; size];

                // Compute double and add algorithm
                let mut to_add = Vec::new();
                let mut a_shifted = Vec::new();
                for (i, b_bit) in b.iter().enumerate() {
                    // double
                    a_shifted.extend(iter::repeat(false_bit).take(i));
                    a_shifted.extend(a.iter());
                    a_shifted.truncate(size);

                    // conditionally add
                    to_add.reserve(a_shifted.len());
                    for (j, a_bit) in a_shifted.iter().enumerate() {
                        let selected_bit = Boolean::conditionally_select(
                            &mut cs.ns(|| format!("select product bit {} {}", i, j)),
                            b_bit,
                            a_bit,
                            &false_bit,
                        )?;

                        to_add.push(selected_bit);
                    }

                    bits = bits.add_bits(
                        &mut cs.ns(|| format!("add bit {}", i)),
                        &to_add
                    )?;
                    let _carry = bits.pop();
                    to_add.clear();
                    a_shifted.clear();
                }
                drop(to_add);
                drop(a_shifted);

                // Compute the maximum value of the sum
                let max_bits = <$gadget as Integer>::SIZE;

                // Truncate the bits to the size of the integer
                bits.truncate(max_bits);

                // Make some arbitrary bounds for ourselves to avoid overflows
                // in the scalar field
                assert!(F::Parameters::MODULUS_BITS >= max_bits as u32);

                // Accumulate the value
                let result_value = match (self.value, other.value) {
                    (Some(a), Some(b)) => {
                         // check for multiplication overflow here
                         let val = match a.checked_mul(b) {
                            Some(val) => val,
                            None => return Err(SignedIntegerError::Overflow)
                         };

                        Some(val)
                    },
                    _ => {
                        // If any of the operands have unknown value, we won't
                        // know the value of the result
                        None
                    }
                };

                // This is a linear combination that we will enforce to be zero
                let mut lc = LinearCombination::zero();

                let mut all_constants = true;


                // Iterate over each bit_gadget of result and add each bit to
                // the linear combination
                let mut coeff = F::one();
                for bit in bits {
                    match bit {
                        Boolean::Is(ref bit) => {
                            all_constants = false;

                            // Add the coeff * bit_gadget
                            lc += (coeff, bit.get_variable());
                        }
                        Boolean::Not(ref bit) => {
                            all_constants = false;

                            // Add coeff * (1 - bit_gadget) = coeff * ONE - coeff * bit_gadget
                            lc = lc + (coeff, CS::one()) - (coeff, bit.get_variable());
                        }
                        Boolean::Constant(bit) => {
                            if bit {
                                lc += (coeff, CS::one());
                            }
                        }
                    }

                    coeff.double_in_place();
                }

                // The value of the actual result is modulo 2 ^ $size
                let modular_value = result_value.map(|v| v as <$gadget as Integer>::IntegerType);

                if all_constants && modular_value.is_some() {
                    // We can just return a constant, rather than
                    // unpacking the result into allocated bits.

                    return Ok(Self::constant(modular_value.unwrap()));
                }

                // Storage area for the resulting bits
                let mut result_bits = Vec::with_capacity(max_bits);

                // Allocate each bit_gadget of the result
                let mut coeff = F::one();
                for i in 0..max_bits {
                    // get bit value
                    let mask = 1 << i as <$gadget as Integer>::IntegerType;

                    // Allocate the bit_gadget
                    let b = AllocatedBit::alloc(cs.ns(|| format!("result bit_gadget {}", i)), || {
                        result_value.map(|v| (v & mask) == mask).get()
                    })?;

                    // Subtract this bit_gadget from the linear combination to ensure that the sums
                    // balance out
                    lc = lc - (coeff, b.get_variable());

                    result_bits.push(b.into());

                    coeff.double_in_place();
                }

                // Enforce that the linear combination equals zero
                cs.enforce(|| "modular multiplication", |lc| lc, |lc| lc, |_| lc);

                // Discard carry bits we don't care about
                result_bits.truncate(<$gadget as Integer>::SIZE);

                Ok(Self {
                    bits: result_bits,
                    value: modular_value,
                })
            }

            fn mul_unsafe<CS: ConstraintSystem<F>>(&self, mut cs: CS, other: &Self) -> Result<Self, Self::ErrorType> {
                // the pseudocode is the same as with Mul::mul, just without the early return on overflow

                // Conditionally select constant result
                let is_constant = Boolean::constant(Self::result_is_constant(&self, &other));
                let allocated_false = Boolean::from(AllocatedBit::alloc(&mut cs.ns(|| "false"), || Ok(false)).unwrap());
                let false_bit = Boolean::conditionally_select(
                    &mut cs.ns(|| "constant_or_allocated_false"),
                    &is_constant,
                    &Boolean::constant(false),
                    &allocated_false,
                )?;

                // Sign extend to double precision
                let size = <$gadget as Integer>::SIZE * 2;

                let a = Boolean::sign_extend(&self.bits, size);
                let b = Boolean::sign_extend(&other.bits, size);

                let mut bits = vec![false_bit; size];

                // Compute double and add algorithm
                let mut to_add = Vec::new();
                let mut a_shifted = Vec::new();
                for (i, b_bit) in b.iter().enumerate() {
                    // double
                    a_shifted.extend(iter::repeat(false_bit).take(i));
                    a_shifted.extend(a.iter());
                    a_shifted.truncate(size);

                    // conditionally add
                    to_add.reserve(a_shifted.len());
                    for (j, a_bit) in a_shifted.iter().enumerate() {
                        let selected_bit = Boolean::conditionally_select(
                            &mut cs.ns(|| format!("select product bit {} {}", i, j)),
                            b_bit,
                            a_bit,
                            &false_bit,
                        )?;

                        to_add.push(selected_bit);
                    }

                    bits = bits.add_bits(
                        &mut cs.ns(|| format!("add bit {}", i)),
                        &to_add
                    )?;
                    let _carry = bits.pop();
                    to_add.clear();
                    a_shifted.clear();
                }
                drop(to_add);
                drop(a_shifted);

                // Compute the maximum value of the sum
                let max_bits = <$gadget as Integer>::SIZE;

                // Truncate the bits to the size of the integer
                bits.truncate(max_bits);

                // Make some arbitrary bounds for ourselves to avoid overflows
                // in the scalar field
                assert!(F::Parameters::MODULUS_BITS >= max_bits as u32);

                // Accumulate the value
                let result_value = match (self.value, other.value) {
                    (Some(a), Some(b)) => {
                        Some(a.wrapping_mul(b))
                    },
                    _ => {
                        // If any of the operands have unknown value, we won't
                        // know the value of the result
                        None
                    }
                };

                // This is a linear combination that we will enforce to be zero
                let mut lc = LinearCombination::zero();

                let mut all_constants = true;

                // Iterate over each bit_gadget of result and add each bit to
                // the linear combination
                let mut coeff = F::one();
                for bit in bits {
                    match bit {
                        Boolean::Is(ref bit) => {
                            all_constants = false;

                            // Add the coeff * bit_gadget
                            lc += (coeff, bit.get_variable());
                        }
                        Boolean::Not(ref bit) => {
                            all_constants = false;

                            // Add coeff * (1 - bit_gadget) = coeff * ONE - coeff * bit_gadget
                            lc = lc + (coeff, CS::one()) - (coeff, bit.get_variable());
                        }
                        Boolean::Constant(bit) => {
                            if bit {
                                lc += (coeff, CS::one());
                            }
                        }
                    }

                    coeff.double_in_place();
                }

                // The value of the actual result is modulo 2 ^ $size
                let modular_value = result_value.map(|v| v as <$gadget as Integer>::IntegerType);

                if all_constants && modular_value.is_some() {
                    // We can just return a constant, rather than
                    // unpacking the result into allocated bits.

                    return Ok(Self::constant(modular_value.unwrap()));
                }

                // Storage area for the resulting bits
                let mut result_bits = Vec::with_capacity(max_bits);

                // Allocate each bit_gadget of the result
                let mut coeff = F::one();
                for i in 0..max_bits {
                    // get bit value
                    let mask = 1 << i as <$gadget as Integer>::IntegerType;

                    // Allocate the bit_gadget
                    let b = AllocatedBit::alloc(cs.ns(|| format!("result bit_gadget {}", i)), || {
                        result_value.map(|v| (v & mask) == mask).get()
                    })?;

                    // Subtract this bit_gadget from the linear combination to ensure that the sums
                    // balance out
                    lc = lc - (coeff, b.get_variable());

                    result_bits.push(b.into());

                    coeff.double_in_place();
                }

                // Enforce that the linear combination equals zero
                cs.enforce(|| "modular multiplication", |lc| lc, |lc| lc, |_| lc);

                // Discard carry bits we don't care about
                result_bits.truncate(<$gadget as Integer>::SIZE);

                Ok(Self {
                    bits: result_bits,
                    value: modular_value,
                })
            }
        }
    )*)
}

mul_int_impl!(Int8 Int16 Int32 Int64 Int128);