1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use snarkvm_utilities::{
    biginteger::*,
    bytes::{FromBytes, ToBytes},
    serialize::{
        CanonicalDeserialize,
        CanonicalDeserializeWithFlags,
        CanonicalSerialize,
        CanonicalSerializeWithFlags,
        ConstantSerializedSize,
    },
};

use std::fmt::Debug;

#[macro_use]
extern crate derivative;

#[macro_use]
extern crate thiserror;

#[macro_use]
mod macros;

pub mod errors;
pub use errors::*;

pub mod field;
pub use field::*;

pub mod fp_256;
pub use fp_256::*;

pub mod fp_320;
pub use fp_320::*;

pub mod fp_384;
pub use fp_384::*;

pub mod fp_768;
pub use fp_768::*;

pub mod fp_832;
pub use fp_832::*;

pub mod fp2;
pub use fp2::*;

pub mod fp3;
pub use fp3::*;

pub mod fp6_2over3;
pub use fp6_2over3::*;

pub mod fp6_3over2;
pub use fp6_3over2::*;

pub mod fp12_2over3over2;
pub use fp12_2over3over2::*;

pub mod fp_parameters;
pub use fp_parameters::*;

pub mod primefield;
pub use primefield::*;

pub mod tests_field;

pub mod to_field_vec;
pub use to_field_vec::*;

pub mod traits;
pub use traits::*;

#[macro_export]
macro_rules! field {
    ($name:ident, $c0:expr) => {
        $name {
            0: $c0,
            1: std::marker::PhantomData,
        }
    };
    ($name:ident, $c0:expr, $c1:expr $(,)?) => {
        $name {
            c0: $c0,
            c1: $c1,
            _parameters: std::marker::PhantomData,
        }
    };
    ($name:ident, $c0:expr, $c1:expr, $c2:expr $(,)?) => {
        $name {
            c0: $c0,
            c1: $c1,
            c2: $c2,
            _parameters: std::marker::PhantomData,
        }
    };
}

/// The interface for a field that supports an efficient square-root operation.
pub trait SquareRootField: Field {
    /// Returns the Legendre symbol.
    fn legendre(&self) -> LegendreSymbol;

    /// Returns the square root of self, if it exists.
    #[must_use]
    fn sqrt(&self) -> Option<Self>;

    /// Sets `self` to be the square root of `self`, if it exists.
    fn sqrt_in_place(&mut self) -> Option<&mut Self>;
}

#[derive(Debug, PartialEq)]
pub enum LegendreSymbol {
    Zero = 0,
    QuadraticResidue = 1,
    QuadraticNonResidue = -1,
}

impl LegendreSymbol {
    pub fn is_zero(&self) -> bool {
        *self == LegendreSymbol::Zero
    }

    pub fn is_qnr(&self) -> bool {
        *self == LegendreSymbol::QuadraticNonResidue
    }

    pub fn is_qr(&self) -> bool {
        *self == LegendreSymbol::QuadraticResidue
    }
}

impl_field_into_bigint!(Fp256, BigInteger256, Fp256Parameters);
impl_field_into_bigint!(Fp320, BigInteger320, Fp320Parameters);
impl_field_into_bigint!(Fp384, BigInteger384, Fp384Parameters);
impl_field_into_bigint!(Fp768, BigInteger768, Fp768Parameters);
impl_field_into_bigint!(Fp832, BigInteger832, Fp832Parameters);

impl_prime_field_serializer!(Fp256, Fp256Parameters, 32);
impl_prime_field_serializer!(Fp320, Fp320Parameters, 40);
impl_prime_field_serializer!(Fp384, Fp384Parameters, 48);
impl_prime_field_serializer!(Fp768, Fp768Parameters, 96);
impl_prime_field_serializer!(Fp832, Fp832Parameters, 104);

pub fn batch_inversion<F: Field>(v: &mut [F]) {
    // Montgomery’s Trick and Fast Implementation of Masked AES
    // Genelle, Prouff and Quisquater
    // Section 3.2

    // First pass: compute [a, ab, abc, ...]
    let mut prod = Vec::with_capacity(v.len());
    let mut tmp = F::one();
    for f in v.iter().filter(|f| !f.is_zero()) {
        tmp.mul_assign(&f);
        prod.push(tmp);
    }

    // Invert `tmp`.
    tmp = tmp.inverse().unwrap(); // Guaranteed to be nonzero.

    // Second pass: iterate backwards to compute inverses
    for (f, s) in v
        .iter_mut()
        // Backwards
        .rev()
        // Ignore normalized elements
        .filter(|f| !f.is_zero())
        // Backwards, skip last element, fill in one for last term.
        .zip(prod.into_iter().rev().skip(1).chain(Some(F::one())))
    {
        // tmp := tmp * g.z; g.z := tmp * s = 1/z
        let newtmp = tmp * &f;
        *f = tmp * &s;
        tmp = newtmp;
    }
}

pub trait Zero: Sized {
    fn zero() -> Self;
    fn is_zero(&self) -> bool;
}

pub trait One: Sized {
    fn one() -> Self;
    fn is_one(&self) -> bool;
}