1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::traits::Group;
use snarkvm_fields::{Field, PrimeField, SquareRootField};
use snarkvm_utilities::{biginteger::BigInteger, bytes::ToBytes, serialize::*, BitIteratorBE};

use std::{fmt::Debug, iter};

pub trait PairingEngine: Sized + 'static + Copy + Debug + Sync + Send {
    /// This is the scalar field of the G1/G2 groups.
    type Fr: PrimeField + SquareRootField + Into<<Self::Fr as PrimeField>::BigInteger>;

    /// The projective representation of an element in G1.
    type G1Projective: ProjectiveCurve<BaseField = Self::Fq, ScalarField = Self::Fr, Affine = Self::G1Affine>
        + From<Self::G1Affine>;

    /// The affine representation of an element in G1.
    type G1Affine: AffineCurve<BaseField = Self::Fq, ScalarField = Self::Fr, Projective = Self::G1Projective>
        + PairingCurve<PairWith = Self::G2Affine, PairingResult = Self::Fqk>
        + From<Self::G1Projective>;

    /// The projective representation of an element in G2.
    type G2Projective: ProjectiveCurve<BaseField = Self::Fqe, ScalarField = Self::Fr, Affine = Self::G2Affine>
        + From<Self::G2Affine>;

    /// The affine representation of an element in G2.
    type G2Affine: AffineCurve<BaseField = Self::Fqe, ScalarField = Self::Fr, Projective = Self::G2Projective>
        + PairingCurve<PairWith = Self::G1Affine, PairingResult = Self::Fqk>
        + From<Self::G2Projective>;

    /// The base field that hosts G1.
    type Fq: PrimeField + SquareRootField;

    /// The extension field that hosts G2.
    type Fqe: SquareRootField;

    /// The extension field that hosts the target group of the pairing.
    type Fqk: Field;

    /// Perform a miller loop with some number of (G1, G2) pairs.
    #[must_use]
    fn miller_loop<'a, I>(i: I) -> Self::Fqk
    where
        I: Iterator<
            Item = (
                &'a <Self::G1Affine as PairingCurve>::Prepared,
                &'a <Self::G2Affine as PairingCurve>::Prepared,
            ),
        >;

    /// Perform final exponentiation of the result of a miller loop.
    #[must_use]
    fn final_exponentiation(_: &Self::Fqk) -> Option<Self::Fqk>;

    /// Computes a product of pairings.
    #[must_use]
    fn product_of_pairings<'a, I>(i: I) -> Self::Fqk
    where
        I: Iterator<
            Item = (
                &'a <Self::G1Affine as PairingCurve>::Prepared,
                &'a <Self::G2Affine as PairingCurve>::Prepared,
            ),
        >,
    {
        Self::final_exponentiation(&Self::miller_loop(i)).unwrap()
    }

    /// Performs multiple pairing operations
    #[must_use]
    fn pairing<G1, G2>(p: G1, q: G2) -> Self::Fqk
    where
        G1: Into<Self::G1Affine>,
        G2: Into<Self::G2Affine>,
    {
        Self::final_exponentiation(&Self::miller_loop(iter::once((
            &p.into().prepare(),
            &q.into().prepare(),
        ))))
        .unwrap()
    }
}

/// Projective representation of an elliptic curve point guaranteed to be
/// in the correct prime order subgroup.
pub trait ProjectiveCurve:
    Group
    + Sized
    + CanonicalSerialize
    + ConstantSerializedSize
    + CanonicalDeserialize
    + From<<Self as ProjectiveCurve>::Affine>
{
    type BaseField: Field;
    type Affine: AffineCurve<Projective = Self, ScalarField = Self::ScalarField> + From<Self> + Into<Self>;

    /// Returns a fixed generator of unknown exponent.
    #[must_use]
    fn prime_subgroup_generator() -> Self;

    /// Normalizes a slice of projective elements so that
    /// conversion to affine is cheap.
    fn batch_normalization(v: &mut [Self]);

    /// Normalizes a slice of projective elements and outputs a vector
    /// containing the affine equivalents.
    fn batch_normalization_into_affine(mut v: Vec<Self>) -> Vec<Self::Affine> {
        Self::batch_normalization(&mut v);
        v.into_iter().map(|v| v.into()).collect()
    }

    /// Checks if the point is already "normalized" so that
    /// cheap affine conversion is possible.
    #[must_use]
    fn is_normalized(&self) -> bool;

    /// Adds an affine element to this element.
    fn add_assign_mixed(&mut self, other: &Self::Affine);

    /// Converts this element into its affine representation.
    #[must_use]
    #[allow(clippy::wrong_self_convention)]
    fn into_affine(&self) -> Self::Affine;

    /// Recommends a wNAF window table size given a scalar. Always returns a
    /// number between 2 and 22, inclusive.
    #[must_use]
    fn recommended_wnaf_for_scalar(scalar: <Self::ScalarField as PrimeField>::BigInteger) -> usize;

    /// Recommends a wNAF window size given the number of scalars you intend to
    /// multiply a base by. Always returns a number between 2 and 22,
    /// inclusive.
    #[must_use]
    fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize;
}

/// Affine representation of an elliptic curve point guaranteed to be
/// in the correct prime order subgroup.
#[allow(clippy::wrong_self_convention)]
pub trait AffineCurve:
    Group
    + Sized
    + CanonicalSerialize
    + ConstantSerializedSize
    + CanonicalDeserialize
    + From<<Self as AffineCurve>::Projective>
{
    type BaseField: Field;
    type Projective: ProjectiveCurve<Affine = Self, ScalarField = Self::ScalarField> + From<Self> + Into<Self>;

    /// Returns a fixed generator of unknown exponent.
    #[must_use]
    fn prime_subgroup_generator() -> Self;

    /// Attempts to construct an affine point given an x-coordinate. The
    /// point is not guaranteed to be in the prime order subgroup.
    ///
    /// If and only if `greatest` is set will the lexicographically
    /// largest y-coordinate be selected.
    fn from_x_coordinate(x: Self::BaseField, greatest: bool) -> Option<Self>;

    /// Attempts to construct an affine point given a y-coordinate. The
    /// point is not guaranteed to be in the prime order subgroup.
    ///
    /// If and only if `greatest` is set will the lexicographically
    /// largest y-coordinate be selected.
    fn from_y_coordinate(y: Self::BaseField, greatest: bool) -> Option<Self>;

    /// Multiply this element by the cofactor and output the
    /// resulting projective element.
    #[must_use]
    fn mul_by_cofactor_to_projective(&self) -> Self::Projective;

    /// Converts this element into its projective representation.
    #[must_use]
    fn into_projective(&self) -> Self::Projective;

    /// Returns a group element if the set of bytes forms a valid group element,
    /// otherwise returns None. This function is primarily intended for sampling
    /// random group elements from a hash-function or RNG output.
    fn from_random_bytes(bytes: &[u8]) -> Option<Self>;

    /// Multiply this element by a scalar field element in BigInteger form.
    fn mul_bits<S: AsRef<[u64]>>(&self, bits: BitIteratorBE<S>) -> Self::Projective;

    /// Multiply this element by the cofactor.
    #[must_use]
    fn mul_by_cofactor(&self) -> Self {
        self.mul_by_cofactor_to_projective().into()
    }

    /// Multiply this element by the inverse of the cofactor modulo the size of
    /// `Self::ScalarField`.
    #[must_use]
    fn mul_by_cofactor_inv(&self) -> Self;

    /// Checks that the point is in the prime order subgroup given the point on the curve.
    #[must_use]
    fn is_in_correct_subgroup_assuming_on_curve(&self) -> bool;

    /// Returns the x-coordinate of the point.
    #[must_use]
    fn to_x_coordinate(&self) -> Self::BaseField;

    /// Returns the y-coordinate of the point.
    #[must_use]
    fn to_y_coordinate(&self) -> Self::BaseField;

    /// Checks that the current point is on the elliptic curve.
    fn is_on_curve(&self) -> bool;
}

pub trait PairingCurve: AffineCurve {
    type Engine: PairingEngine<Fr = Self::ScalarField>;
    type Prepared: CanonicalSerialize + CanonicalDeserialize + ToBytes + Default + Clone + Send + Sync + Debug + 'static;
    type PairWith: PairingCurve<PairWith = Self>;
    type PairingResult: Field;

    /// Prepares this element for pairing purposes.
    #[must_use]
    fn prepare(&self) -> Self::Prepared;

    /// Perform a pairing
    #[must_use]
    fn pairing_with(&self, other: &Self::PairWith) -> Self::PairingResult;
}

pub trait ModelParameters: Send + Sync + 'static {
    type BaseField: Field + SquareRootField;
    type ScalarField: PrimeField + SquareRootField + Into<<Self::ScalarField as PrimeField>::BigInteger>;
}

pub trait ShortWeierstrassParameters: ModelParameters {
    const COEFF_A: Self::BaseField;
    const COEFF_B: Self::BaseField;
    const COFACTOR: &'static [u64];
    const COFACTOR_INV: Self::ScalarField;
    const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField);

    #[inline(always)]
    fn mul_by_a(elem: &Self::BaseField) -> Self::BaseField {
        let mut copy = *elem;
        copy *= &Self::COEFF_A;
        copy
    }

    #[inline(always)]
    fn add_b(elem: &Self::BaseField) -> Self::BaseField {
        let mut copy = *elem;
        copy += &Self::COEFF_B;
        copy
    }

    #[inline(always)]
    fn empirical_recommended_wnaf_for_scalar(scalar: <Self::ScalarField as PrimeField>::BigInteger) -> usize {
        let num_bits = scalar.num_bits() as usize;

        if num_bits >= 103 {
            4
        } else if num_bits >= 37 {
            3
        } else {
            2
        }
    }

    #[inline(always)]
    fn empirical_recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize {
        const RECOMMENDATIONS: [usize; 11] = [1, 3, 8, 20, 47, 126, 260, 826, 1501, 4555, 84071];

        let mut result = 4;
        for r in &RECOMMENDATIONS {
            match num_scalars > *r {
                true => result += 1,
                false => break,
            }
        }
        result
    }
}

pub trait TwistedEdwardsParameters: ModelParameters {
    const COEFF_A: Self::BaseField;
    const COEFF_D: Self::BaseField;
    const COFACTOR: &'static [u64];
    const COFACTOR_INV: Self::ScalarField;
    const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField);

    type MontgomeryParameters: MontgomeryParameters<BaseField = Self::BaseField>;

    #[inline(always)]
    fn mul_by_a(elem: &Self::BaseField) -> Self::BaseField {
        let mut copy = *elem;
        copy *= &Self::COEFF_A;
        copy
    }

    #[inline(always)]
    fn empirical_recommended_wnaf_for_scalar(scalar: <Self::ScalarField as PrimeField>::BigInteger) -> usize {
        let num_bits = scalar.num_bits() as usize;

        if num_bits >= 130 {
            4
        } else if num_bits >= 34 {
            3
        } else {
            2
        }
    }

    #[inline(always)]
    fn empirical_recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize {
        const RECOMMENDATIONS: [usize; 12] = [1, 3, 7, 20, 43, 120, 273, 563, 1630, 3128, 7933, 62569];

        let mut ret = 4;
        for r in &RECOMMENDATIONS {
            if num_scalars > *r {
                ret += 1;
            } else {
                break;
            }
        }

        ret
    }
}

pub trait MontgomeryParameters: ModelParameters {
    const COEFF_A: Self::BaseField;
    const COEFF_B: Self::BaseField;

    type TwistedEdwardsParameters: TwistedEdwardsParameters<BaseField = Self::BaseField>;
}