1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

//! A sparse polynomial represented in coefficient form.

use crate::fft::{DenseOrSparsePolynomial, DensePolynomial, EvaluationDomain, Evaluations};
use snarkvm_fields::{Field, PrimeField};
use snarkvm_utilities::{errors::SerializationError, serialize::*};

use std::fmt;

/// Stores a sparse polynomial in coefficient form.
#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]
pub struct SparsePolynomial<F: Field> {
    /// The coefficient a_i of `x^i` is stored as (i, a_i) in `self.coeffs`.
    /// the entries in `self.coeffs` are sorted in increasing order of `i`.
    pub coeffs: Vec<(usize, F)>,
}

impl<F: Field> fmt::Debug for SparsePolynomial<F> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        for (i, coeff) in self.coeffs.iter().filter(|(_, c)| !c.is_zero()) {
            if *i == 0 {
                write!(f, "\n{:?}", coeff)?;
            } else if *i == 1 {
                write!(f, " + \n{:?} * x", coeff)?;
            } else {
                write!(f, " + \n{:?} * x^{}", coeff, i)?;
            }
        }
        Ok(())
    }
}

impl<F: Field> SparsePolynomial<F> {
    /// Returns the zero polynomial.
    pub fn zero() -> Self {
        Self { coeffs: Vec::new() }
    }

    /// Checks if the given polynomial is zero.
    pub fn is_zero(&self) -> bool {
        self.coeffs.is_empty() || self.coeffs.iter().all(|(_, c)| c.is_zero())
    }

    /// Constructs a new polynomial from a list of coefficients.
    pub fn from_coefficients_slice(coeffs: &[(usize, F)]) -> Self {
        Self::from_coefficients_vec(coeffs.to_vec())
    }

    /// Constructs a new polynomial from a list of coefficients.
    pub fn from_coefficients_vec(mut coeffs: Vec<(usize, F)>) -> Self {
        // While there are zeros at the end of the coefficient vector, pop them off.
        while coeffs.last().map_or(false, |(_, c)| c.is_zero()) {
            coeffs.pop();
        }
        // Check that either the coefficients vec is empty or that the last coeff is non-zero.
        assert!(coeffs.last().map_or(true, |(_, c)| !c.is_zero()));

        Self { coeffs }
    }

    /// Returns the degree of the polynomial.
    pub fn degree(&self) -> usize {
        if self.is_zero() {
            0
        } else {
            assert!(self.coeffs.last().map_or(false, |(_, c)| !c.is_zero()));
            self.coeffs.last().unwrap().0
        }
    }

    /// Evaluates `self` at the given `point` in the field.
    pub fn evaluate(&self, point: F) -> F {
        if self.is_zero() {
            return F::zero();
        }
        let mut total = F::zero();
        for (i, c) in &self.coeffs {
            total += *c * point.pow(&[*i as u64]);
        }
        total
    }

    /// Perform a naive n^2 multiplicatoin of `self` by `other`.
    pub fn mul(&self, other: &Self) -> Self {
        if self.is_zero() || other.is_zero() {
            SparsePolynomial::zero()
        } else {
            let mut result = std::collections::HashMap::new();
            for (i, self_coeff) in self.coeffs.iter() {
                for (j, other_coeff) in other.coeffs.iter() {
                    let cur_coeff = result.entry(i + j).or_insert_with(F::zero);
                    *cur_coeff += *self_coeff * other_coeff;
                }
            }
            let mut result = result.into_iter().collect::<Vec<_>>();
            result.sort_by(|a, b| a.0.cmp(&b.0));
            SparsePolynomial::from_coefficients_vec(result)
        }
    }
}

impl<F: PrimeField> SparsePolynomial<F> {
    /// Evaluate `self` over `domain`.
    pub fn evaluate_over_domain_by_ref(&self, domain: EvaluationDomain<F>) -> Evaluations<F> {
        let poly: DenseOrSparsePolynomial<'_, F> = self.into();
        DenseOrSparsePolynomial::<F>::evaluate_over_domain(poly, domain)
        // unimplemented!("current implementation does not produce evals in correct order")
    }

    /// Evaluate `self` over `domain`.
    pub fn evaluate_over_domain(self, domain: EvaluationDomain<F>) -> Evaluations<F> {
        let poly: DenseOrSparsePolynomial<'_, F> = self.into();
        DenseOrSparsePolynomial::<F>::evaluate_over_domain(poly, domain)
        // unimplemented!("current implementation does not produce evals in correct order")
    }
}

impl<F: Field> Into<DensePolynomial<F>> for SparsePolynomial<F> {
    fn into(self) -> DensePolynomial<F> {
        let mut other = vec![F::zero(); self.degree() + 1];
        for (i, coeff) in self.coeffs {
            other[i] = coeff;
        }
        DensePolynomial::from_coefficients_vec(other)
    }
}

#[cfg(test)]
mod tests {
    use crate::fft::{DensePolynomial, EvaluationDomain, SparsePolynomial};
    use snarkvm_curves::bls12_377::Fr;
    use snarkvm_fields::One;

    #[test]
    fn evaluate_over_domain() {
        for size in 2..10 {
            let domain_size = 1 << size;
            let domain = EvaluationDomain::new(domain_size).unwrap();
            let two = Fr::one() + Fr::one();
            let sparse_poly = SparsePolynomial::from_coefficients_vec(vec![(0, two), (1, two)]);
            let evals1 = sparse_poly.evaluate_over_domain_by_ref(domain);

            let dense_poly: DensePolynomial<Fr> = sparse_poly.into();
            let evals2 = dense_poly.clone().evaluate_over_domain(domain);
            assert_eq!(evals1.clone().interpolate(), evals2.clone().interpolate());
            assert_eq!(evals1.interpolate(), dense_poly);
            assert_eq!(evals2.interpolate(), dense_poly);
        }
    }
}