1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

//! Work with sparse and dense polynomials.

use crate::fft::{EvaluationDomain, Evaluations};
use snarkvm_fields::{Field, PrimeField};

use std::{borrow::Cow, convert::TryInto};

use DenseOrSparsePolynomial::*;

mod dense;
pub use dense::DensePolynomial;

mod sparse;
pub use sparse::SparsePolynomial;

/// Represents either a sparse polynomial or a dense one.
#[derive(Clone)]
pub enum DenseOrSparsePolynomial<'a, F: 'a + Field> {
    /// Represents the case where `self` is a sparse polynomial
    SPolynomial(Cow<'a, SparsePolynomial<F>>),
    /// Represents the case where `self` is a dense polynomial
    DPolynomial(Cow<'a, DensePolynomial<F>>),
}

impl<F: Field> From<DensePolynomial<F>> for DenseOrSparsePolynomial<'_, F> {
    fn from(other: DensePolynomial<F>) -> Self {
        DPolynomial(Cow::Owned(other))
    }
}

impl<'a, F: 'a + Field> From<&'a DensePolynomial<F>> for DenseOrSparsePolynomial<'a, F> {
    fn from(other: &'a DensePolynomial<F>) -> Self {
        DPolynomial(Cow::Borrowed(other))
    }
}

impl<F: Field> From<SparsePolynomial<F>> for DenseOrSparsePolynomial<'_, F> {
    fn from(other: SparsePolynomial<F>) -> Self {
        SPolynomial(Cow::Owned(other))
    }
}

impl<'a, F: Field> From<&'a SparsePolynomial<F>> for DenseOrSparsePolynomial<'a, F> {
    fn from(other: &'a SparsePolynomial<F>) -> Self {
        SPolynomial(Cow::Borrowed(other))
    }
}

impl<F: Field> Into<DensePolynomial<F>> for DenseOrSparsePolynomial<'_, F> {
    fn into(self) -> DensePolynomial<F> {
        match self {
            DPolynomial(p) => p.into_owned(),
            SPolynomial(p) => p.into_owned().into(),
        }
    }
}

impl<F: Field> TryInto<SparsePolynomial<F>> for DenseOrSparsePolynomial<'_, F> {
    type Error = ();

    fn try_into(self) -> Result<SparsePolynomial<F>, ()> {
        match self {
            SPolynomial(p) => Ok(p.into_owned()),
            _ => Err(()),
        }
    }
}

impl<F: Field> DenseOrSparsePolynomial<'_, F> {
    /// Checks if the given polynomial is zero.
    pub fn is_zero(&self) -> bool {
        match self {
            SPolynomial(s) => s.is_zero(),
            DPolynomial(d) => d.is_zero(),
        }
    }

    /// Return the degree of `self.
    pub fn degree(&self) -> usize {
        match self {
            SPolynomial(s) => s.degree(),
            DPolynomial(d) => d.degree(),
        }
    }

    #[inline]
    fn leading_coefficient(&self) -> Option<&F> {
        match self {
            SPolynomial(p) => p.coeffs.last().map(|(_, c)| c),
            DPolynomial(p) => p.last(),
        }
    }

    /// Divide self by another (sparse or dense) polynomial, and returns the quotient and remainder.
    pub fn divide_with_q_and_r(&self, divisor: &Self) -> Option<(DensePolynomial<F>, DensePolynomial<F>)> {
        if self.is_zero() {
            Some((DensePolynomial::zero(), DensePolynomial::zero()))
        } else if divisor.is_zero() {
            panic!("Dividing by zero polynomial")
        } else if self.degree() < divisor.degree() {
            Some((DensePolynomial::zero(), self.clone().into()))
        } else {
            // Now we know that self.degree() >= divisor.degree();
            let mut quotient = vec![F::zero(); self.degree() - divisor.degree() + 1];
            let mut remainder: DensePolynomial<F> = self.clone().into();
            // Can unwrap here because we know self is not zero.
            let divisor_leading_inv = divisor.leading_coefficient().unwrap().inverse().unwrap();
            while !remainder.is_zero() && remainder.degree() >= divisor.degree() {
                let cur_q_coeff = *remainder.coeffs.last().unwrap() * divisor_leading_inv;
                let cur_q_degree = remainder.degree() - divisor.degree();
                quotient[cur_q_degree] = cur_q_coeff;

                if let SPolynomial(p) = divisor {
                    for (i, div_coeff) in &p.coeffs {
                        remainder[cur_q_degree + i] -= &(cur_q_coeff * div_coeff);
                    }
                } else if let DPolynomial(p) = divisor {
                    for (i, div_coeff) in p.iter().enumerate() {
                        remainder[cur_q_degree + i] -= &(cur_q_coeff * div_coeff);
                    }
                }

                while let Some(true) = remainder.coeffs.last().map(|c| c.is_zero()) {
                    remainder.coeffs.pop();
                }
            }
            Some((DensePolynomial::from_coefficients_vec(quotient), remainder))
        }
    }
}
impl<F: PrimeField> DenseOrSparsePolynomial<'_, F> {
    /// Construct `Evaluations` by evaluating a polynomial over the domain `domain`.
    pub fn evaluate_over_domain(poly: impl Into<Self>, domain: EvaluationDomain<F>) -> Evaluations<F> {
        let poly = poly.into();
        poly.eval_over_domain_helper(domain)
    }

    fn eval_over_domain_helper(self, domain: EvaluationDomain<F>) -> Evaluations<F> {
        match self {
            SPolynomial(Cow::Borrowed(s)) => {
                let evals = domain.elements().map(|elem| s.evaluate(elem)).collect();
                Evaluations::from_vec_and_domain(evals, domain)
            }
            SPolynomial(Cow::Owned(s)) => {
                let evals = domain.elements().map(|elem| s.evaluate(elem)).collect();
                Evaluations::from_vec_and_domain(evals, domain)
            }
            DPolynomial(Cow::Borrowed(d)) => Evaluations::from_vec_and_domain(domain.fft(&d.coeffs), domain),
            DPolynomial(Cow::Owned(mut d)) => {
                domain.fft_in_place(&mut d.coeffs);
                Evaluations::from_vec_and_domain(d.coeffs, domain)
            }
        }
    }
}