1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{
    errors::MerkleError,
    merkle_tree::{MerklePath, MerkleTreeDigest},
    traits::{MerkleParameters, CRH},
};
use snarkvm_utilities::ToBytes;
use std::sync::Arc;

#[derive(Default)]
pub struct MerkleTree<P: MerkleParameters> {
    /// The computed root of the full Merkle tree.
    root: Option<MerkleTreeDigest<P>>,

    /// The internal hashes, from root to hashed leaves, of the full Merkle tree.
    tree: Vec<MerkleTreeDigest<P>>,

    /// The index from which hashes of each non-empty leaf in the Merkle tree can be obtained.
    hashed_leaves_index: usize,

    /// For each level after a full tree has been built from the leaves,
    /// keeps both the roots the siblings that are used to get to the desired depth.
    padding_tree: Vec<(MerkleTreeDigest<P>, MerkleTreeDigest<P>)>,

    /// The Merkle tree parameters (e.g. the hash function).
    parameters: Arc<P>,
}

#[cfg(feature = "parallel")]
use rayon::prelude::*;

impl<P: MerkleParameters + Send + Sync> MerkleTree<P> {
    pub const DEPTH: u8 = P::DEPTH as u8;

    fn hash_row<L: ToBytes + Send + Sync>(
        parameters: &P,
        leaves: &[L],
    ) -> Result<Vec<Vec<<<P as MerkleParameters>::H as CRH>::Output>>, MerkleError> {
        let hash_input_size_in_bytes = (P::H::INPUT_SIZE_BITS / 8) * 2;
        cfg_chunks!(leaves, 500) // arbitrary, experimentally derived
            .map(|chunk| -> Result<Vec<_>, MerkleError> {
                let mut buffer = vec![0u8; hash_input_size_in_bytes];
                let mut out = Vec::with_capacity(chunk.len());
                for leaf in chunk.into_iter() {
                    out.push(parameters.hash_leaf(&leaf, &mut buffer)?);
                }
                Ok(out)
            })
            .collect::<Result<Vec<_>, MerkleError>>()
    }

    pub fn new<L: ToBytes + Send + Sync>(parameters: Arc<P>, leaves: &[L]) -> Result<Self, MerkleError> {
        let new_time = start_timer!(|| "MerkleTree::new");

        let last_level_size = leaves.len().next_power_of_two();
        let tree_size = 2 * last_level_size - 1;
        let tree_depth = tree_depth(tree_size);

        if tree_depth > Self::DEPTH as usize {
            return Err(MerkleError::InvalidTreeDepth(tree_depth, Self::DEPTH as usize));
        }

        // Initialize the Merkle tree.
        let empty_hash = parameters.hash_empty()?;
        let mut tree = vec![empty_hash.clone(); tree_size];

        // Compute the starting index (on the left) for each level of the tree.
        let mut index = 0;
        let mut level_indices = Vec::with_capacity(tree_depth);
        for _ in 0..=tree_depth {
            level_indices.push(index);
            index = left_child(index);
        }

        // Compute and store the hash values for each leaf.
        let hash_input_size_in_bytes = (P::H::INPUT_SIZE_BITS / 8) * 2;
        let last_level_index = level_indices.pop().unwrap_or(0);

        let subsections = Self::hash_row(&*parameters, leaves)?;

        let mut subsection_index = 0;
        for subsection in subsections.into_iter() {
            tree[last_level_index + subsection_index..last_level_index + subsection_index + subsection.len()]
                .copy_from_slice(&subsection[..]);
            subsection_index += subsection.len();
        }

        // Compute the hash values for every node in the tree.
        let mut upper_bound = last_level_index;
        let mut buffer = vec![0u8; hash_input_size_in_bytes];
        level_indices.reverse();
        for &start_index in &level_indices {
            // Iterate over the current level.
            let hashings = (start_index..upper_bound)
                .map(|i| (&tree[left_child(i)], &tree[right_child(i)]))
                .collect::<Vec<_>>();

            let hashes = Self::hash_row(&*parameters, &hashings[..])?;

            let mut subsection_index = 0;
            for subsection in hashes.into_iter() {
                tree[start_index + subsection_index..start_index + subsection_index + subsection.len()]
                    .copy_from_slice(&subsection[..]);
                subsection_index += subsection.len();
            }

            upper_bound = start_index;
        }

        // Finished computing actual tree.
        // Now, we compute the dummy nodes until we hit our DEPTH goal.
        let mut current_depth = tree_depth;
        let mut padding_tree = Vec::with_capacity((Self::DEPTH as usize).saturating_sub(current_depth + 1));
        let mut current_hash = tree[0].clone();
        while current_depth < Self::DEPTH as usize {
            current_hash = parameters.hash_inner_node(&current_hash, &empty_hash, &mut buffer)?;

            // do not pad at the top-level of the tree
            if current_depth < Self::DEPTH as usize - 1 {
                padding_tree.push((current_hash.clone(), empty_hash.clone()));
            }
            current_depth += 1;
        }
        let root_hash = current_hash;

        end_timer!(new_time);

        Ok(MerkleTree {
            tree,
            padding_tree,
            hashed_leaves_index: last_level_index,
            parameters,
            root: Some(root_hash),
        })
    }

    pub fn rebuild<L: ToBytes + Send + Sync, I: ExactSizeIterator<Item = L>>(
        &self,
        old_leaves: I,
        new_leaves: &[L],
    ) -> Result<Self, MerkleError> {
        let new_time = start_timer!(|| "MerkleTree::rebuild");

        let last_level_size = (old_leaves.len() + new_leaves.len()).next_power_of_two();
        let tree_size = 2 * last_level_size - 1;
        let tree_depth = tree_depth(tree_size);

        if tree_depth > Self::DEPTH as usize {
            return Err(MerkleError::InvalidTreeDepth(tree_depth, Self::DEPTH as usize));
        }

        // Initialize the Merkle tree.
        let empty_hash = self.parameters.hash_empty()?;
        let mut tree = vec![empty_hash.clone(); tree_size];

        // Compute the starting index (on the left) for each level of the tree.
        let mut index = 0;
        let mut level_indices = Vec::with_capacity(tree_depth);
        for _ in 0..=tree_depth {
            level_indices.push(index);
            index = left_child(index);
        }

        // Track the indices of newly added leaves.
        let new_indices = (old_leaves.len()..old_leaves.len() + new_leaves.len()).collect::<Vec<_>>();

        // Compute and store the hash values for each leaf.
        let hash_input_size_in_bytes = (P::H::INPUT_SIZE_BITS / 8) * 2;
        let last_level_index = level_indices.pop().unwrap_or(0);

        // The beginning of the tree can be reconstructed from pre-existing hashed leaves.
        tree[last_level_index..][..old_leaves.len()].clone_from_slice(&self.hashed_leaves()[..old_leaves.len()]);

        // The new leaves require hashing.
        let subsections = Self::hash_row(&*self.parameters, new_leaves)?;

        for (i, subsection) in subsections.into_iter().enumerate() {
            tree[last_level_index + old_leaves.len() + i..last_level_index + old_leaves.len() + i + subsection.len()]
                .copy_from_slice(&subsection[..]);
        }

        // Compute the hash values for every node in the tree.
        let mut upper_bound = last_level_index;
        let mut buffer = vec![0u8; hash_input_size_in_bytes];
        level_indices.reverse();
        for &start_index in &level_indices {
            // Iterate over the current level.
            for current_index in start_index..upper_bound {
                let left_index = left_child(current_index);
                let right_index = right_child(current_index);

                // Hash only the tree paths that are altered by the addition of new leaves or are brand new.
                if new_indices.contains(&current_index)
                    || self.tree.get(left_index) != tree.get(left_index)
                    || self.tree.get(right_index) != tree.get(right_index)
                    || new_indices
                        .iter()
                        .any(|&idx| Ancestors(idx).into_iter().find(|&i| i == current_index).is_some())
                {
                    // Compute Hash(left || right).
                    tree[current_index] =
                        self.parameters
                            .hash_inner_node(&tree[left_index], &tree[right_index], &mut buffer)?;
                } else {
                    tree[current_index] = self.tree[current_index].clone();
                }
            }
            upper_bound = start_index;
        }

        // Finished computing actual tree.
        // Now, we compute the dummy nodes until we hit our DEPTH goal.
        let mut current_depth = tree_depth;
        let mut current_hash = tree[0].clone();

        // The whole padding tree can be reused if the current hash matches the previous one.
        let new_padding_tree = if current_hash == self.tree[0] {
            current_hash =
                self.parameters
                    .hash_inner_node(&self.padding_tree.last().unwrap().0, &empty_hash, &mut buffer)?;

            None
        } else {
            let mut padding_tree = Vec::with_capacity((Self::DEPTH as usize).saturating_sub(current_depth + 1));

            while current_depth < Self::DEPTH as usize {
                current_hash = self
                    .parameters
                    .hash_inner_node(&current_hash, &empty_hash, &mut buffer)?;

                // do not pad at the top-level of the tree
                if current_depth < Self::DEPTH as usize - 1 {
                    padding_tree.push((current_hash.clone(), empty_hash.clone()));
                }
                current_depth += 1;
            }

            Some(padding_tree)
        };
        let root_hash = current_hash;

        end_timer!(new_time);

        // update the values at the very end so the original tree is not altered in case of failure
        Ok(MerkleTree {
            root: Some(root_hash),
            tree,
            hashed_leaves_index: last_level_index,
            padding_tree: if let Some(padding_tree) = new_padding_tree {
                padding_tree
            } else {
                self.padding_tree.clone()
            },
            parameters: self.parameters.clone(),
        })
    }

    #[inline]
    pub fn root(&self) -> <P::H as CRH>::Output {
        self.root.clone().unwrap()
    }

    #[inline]
    pub fn tree(&self) -> &[<P::H as CRH>::Output] {
        &self.tree
    }

    #[inline]
    pub fn hashed_leaves(&self) -> &[<P::H as CRH>::Output] {
        &self.tree[self.hashed_leaves_index..]
    }

    pub fn generate_proof<L: ToBytes>(&self, index: usize, leaf: &L) -> Result<MerklePath<P>, MerkleError> {
        let prove_time = start_timer!(|| "MerkleTree::generate_proof");
        let mut path = vec![];

        let hash_input_size_in_bytes = (P::H::INPUT_SIZE_BITS / 8) * 2;
        let mut buffer = vec![0u8; hash_input_size_in_bytes];

        let leaf_hash = self.parameters.hash_leaf(leaf, &mut buffer)?;

        let tree_depth = tree_depth(self.tree.len());
        let tree_index = convert_index_to_last_level(index, tree_depth);

        // Check that the given index corresponds to the correct leaf.
        if leaf_hash != self.tree[tree_index] {
            return Err(MerkleError::IncorrectLeafIndex(tree_index));
        }

        // Iterate from the leaf up to the root, storing all intermediate hash values.
        let mut current_node = tree_index;
        while !is_root(current_node) {
            let sibling_node = sibling(current_node).unwrap();
            let (curr_hash, sibling_hash) = (self.tree[current_node].clone(), self.tree[sibling_node].clone());
            if is_left_child(current_node) {
                path.push((curr_hash, sibling_hash));
            } else {
                path.push((sibling_hash, curr_hash));
            }
            current_node = parent(current_node).unwrap();
        }

        // Store the root node. Set boolean as true for consistency with digest location.
        if path.len() > Self::DEPTH as usize {
            return Err(MerkleError::InvalidPathLength(path.len(), Self::DEPTH as usize));
        }

        if path.len() != Self::DEPTH as usize {
            let empty_hash = self.parameters.hash_empty()?;
            path.push((self.tree[0].clone(), empty_hash));

            for &(ref hash, ref sibling_hash) in &self.padding_tree {
                path.push((hash.clone(), sibling_hash.clone()));
            }
        }
        end_timer!(prove_time);

        if path.len() != Self::DEPTH as usize {
            Err(MerkleError::IncorrectPathLength(path.len()))
        } else {
            Ok(MerklePath {
                parameters: self.parameters.clone(),
                path,
            })
        }
    }
}

/// Returns the depth of the tree, given the size of the tree.
#[inline]
fn tree_depth(tree_size: usize) -> usize {
    // Returns the log2 value of the given number.
    fn log2(number: usize) -> usize {
        (number as f64).log2() as usize
    }

    log2(tree_size)
}

/// Returns true iff the index represents the root.
#[inline]
fn is_root(index: usize) -> bool {
    index == 0
}

/// Returns the index of the left child, given an index.
#[inline]
fn left_child(index: usize) -> usize {
    2 * index + 1
}

/// Returns the index of the right child, given an index.
#[inline]
fn right_child(index: usize) -> usize {
    2 * index + 2
}

/// Returns the index of the sibling, given an index.
#[inline]
fn sibling(index: usize) -> Option<usize> {
    if index == 0 {
        None
    } else if is_left_child(index) {
        Some(index + 1)
    } else {
        Some(index - 1)
    }
}

/// Returns true iff the given index represents a left child.
#[inline]
fn is_left_child(index: usize) -> bool {
    index % 2 == 1
}

/// Returns the index of the parent, given an index.
#[inline]
fn parent(index: usize) -> Option<usize> {
    if index > 0 { Some((index - 1) >> 1) } else { None }
}

#[inline]
fn convert_index_to_last_level(index: usize, tree_depth: usize) -> usize {
    index + (1 << tree_depth) - 1
}

pub struct Ancestors(usize);

impl Iterator for Ancestors {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        if let Some(parent) = parent(self.0) {
            self.0 = parent;
            Some(parent)
        } else {
            None
        }
    }
}