1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
// Copyright 2024 MaidSafe.net limited.
//
// This SAFE Network Software is licensed to you under The General Public License (GPL), version 3.
// Unless required by applicable law or agreed to in writing, the SAFE Network Software distributed
// under the GPL Licence is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. Please review the Licences for the specific language governing
// permissions and limitations relating to use of the SAFE Network Software.

use crate::{
    error::Result, reg_crdt::RegisterCrdt, Entry, EntryHash, Error, Permissions, RegisterAddress,
    RegisterOp,
};

use bls::{PublicKey, SecretKey, Signature};
use crdts::merkle_reg::MerkleReg;
use serde::{Deserialize, Serialize};
use std::collections::BTreeSet;
use xor_name::XorName;

/// Arbitrary maximum size of a register entry.
const MAX_REG_ENTRY_SIZE: usize = 1024;

/// Maximum number of entries of a register.
const MAX_REG_NUM_ENTRIES: u16 = 1024;

/// A Register on the SAFE Network
#[derive(Clone, Eq, PartialEq, PartialOrd, Hash, Serialize, Deserialize, Debug)]
pub struct Register {
    /// CRDT data of the Register
    crdt: RegisterCrdt,
    /// Permissions of the Register
    /// Depending on the permissions, the owner can allow other users to write to the register
    /// Everyone can always read the Register because all data is public
    permissions: Permissions,
}

/// A Signed Register on the SAFE Network
/// This cryptographically secure version of the Register is used to make sure that the data cannot be tampered with
#[derive(Clone, Debug, Serialize, Deserialize, PartialOrd, PartialEq, Eq, Hash)]
pub struct SignedRegister {
    /// the base register we had at creation
    base_register: Register,
    /// signature over the above by the owner
    signature: Signature,
    /// operations to apply on this register,
    /// they contain a signature of the writer
    ops: BTreeSet<RegisterOp>,
}

impl SignedRegister {
    /// Create a new SignedRegister
    pub fn new(base_register: Register, signature: Signature) -> Self {
        Self {
            base_register,
            signature,
            ops: BTreeSet::new(),
        }
    }

    /// Verfies a SignedRegister
    pub fn verify(&self) -> Result<()> {
        let bytes = self.base_register.bytes()?;
        if !self
            .base_register
            .owner()
            .verify(&self.signature, bytes.as_slice())
        {
            return Err(Error::InvalidSignature);
        }

        for op in &self.ops {
            self.base_register.check_register_op(op)?;
        }
        Ok(())
    }

    pub fn verify_with_address(&self, address: RegisterAddress) -> Result<()> {
        if self.base_register.address() != &address {
            return Err(Error::InvalidRegisterAddress {
                requested: Box::new(address),
                got: Box::new(*self.address()),
            });
        }
        self.verify()
    }

    /// Return the Register after applying all the operations
    pub fn register(self) -> Result<Register> {
        let mut register = self.base_register;
        for op in self.ops {
            register.apply_op(op)?;
        }
        Ok(register)
    }

    /// Merge two SignedRegisters
    pub fn merge(&mut self, other: &Self) -> Result<()> {
        self.base_register
            .verify_is_mergeable(&other.base_register)?;
        self.ops.extend(other.ops.clone());
        Ok(())
    }

    /// Merge two SignedRegisters but verify the incoming content
    /// Significantly slower than merge, use when you want to trust but verify the `other`
    pub fn verified_merge(&mut self, other: &Self) -> Result<()> {
        self.base_register
            .verify_is_mergeable(&other.base_register)?;
        other.verify()?;
        self.ops.extend(other.ops.clone());
        Ok(())
    }

    /// Return the address.
    pub fn address(&self) -> &RegisterAddress {
        self.base_register.address()
    }

    /// Return the owner of the data.
    pub fn owner(&self) -> PublicKey {
        self.base_register.owner()
    }

    /// Check and add an Op to the SignedRegister
    pub fn add_op(&mut self, op: RegisterOp) -> Result<()> {
        self.base_register.check_register_op(&op)?;
        self.ops.insert(op);
        Ok(())
    }

    /// Access the underlying MerkleReg (e.g. for access to history)
    /// NOTE: This API is unstable and may be removed in the future
    pub fn merkle_reg(&self) -> &MerkleReg<Entry> {
        self.base_register.merkle_reg()
    }
}

impl Register {
    /// Create a new Register
    pub fn new(owner: PublicKey, meta: XorName, mut permissions: Permissions) -> Self {
        let address = RegisterAddress { meta, owner };
        permissions.add_writer(owner);
        Self {
            crdt: RegisterCrdt::new(address),
            permissions,
        }
    }

    /// Sign a Register and return the signature, makes sure the signer is the owner in the process
    pub fn sign(&self, secret_key: &SecretKey) -> Result<Signature> {
        if self.owner() != secret_key.public_key() {
            return Err(Error::InvalidSecretKey);
        }
        let bytes = self.bytes()?;
        let signature = secret_key.sign(bytes);
        Ok(signature)
    }

    /// Returns a bytes version of the Register used for signing
    /// Use this API when you want to sign a Register withtout providing a secret key to the Register API
    pub fn bytes(&self) -> Result<Vec<u8>> {
        rmp_serde::to_vec(self).map_err(|_| Error::SerialisationFailed)
    }

    /// Sign a Register into a SignedRegister
    pub fn into_signed(self, secret_key: &SecretKey) -> Result<SignedRegister> {
        let signature = self.sign(secret_key)?;
        Ok(SignedRegister::new(self, signature))
    }

    /// Return the address.
    pub fn address(&self) -> &RegisterAddress {
        self.crdt.address()
    }

    /// Return the owner of the data.
    pub fn owner(&self) -> PublicKey {
        self.address().owner()
    }

    /// Return the number of items held in the register
    pub fn size(&self) -> u64 {
        self.crdt.size()
    }

    /// Return a value corresponding to the provided 'hash', if present.
    pub fn get(&self, hash: EntryHash) -> Result<&Entry> {
        self.crdt.get(hash).ok_or(Error::NoSuchEntry(hash))
    }

    /// Read the last entry, or entries when there are branches, if the register is not empty.
    pub fn read(&self) -> BTreeSet<(EntryHash, Entry)> {
        self.crdt.read()
    }

    /// Return the permission.
    pub fn permissions(&self) -> &Permissions {
        &self.permissions
    }

    /// Write an entry to the Register, returning the generated
    /// CRDT operation so the caller can sign and broadcast it to other replicas,
    /// along with the hash of the entry just written.
    pub fn write(
        &mut self,
        entry: Entry,
        children: &BTreeSet<EntryHash>,
        signer: &SecretKey,
    ) -> Result<(EntryHash, RegisterOp)> {
        self.check_entry_and_reg_sizes(&entry)?;
        // check permissions before writing on the underlying CRDT
        self.check_user_permissions(signer.public_key())?;
        let (hash, address, crdt_op) = self.crdt.write(entry, children)?;
        let op = RegisterOp::new(address, crdt_op, signer);
        Ok((hash, op))
    }

    /// Apply a signed data CRDT operation.
    pub fn apply_op(&mut self, op: RegisterOp) -> Result<()> {
        self.check_entry_and_reg_sizes(&op.crdt_op.value)?;
        self.check_register_op(&op)?;
        self.crdt.apply_op(op)
    }

    /// Merge another Register into this one.
    pub fn merge(&mut self, other: &Self) -> Result<()> {
        self.verify_is_mergeable(other)?;
        self.crdt.merge(other.crdt.clone());
        Ok(())
    }

    /// Check if a register op is valid for our current register
    pub fn check_register_op(&self, op: &RegisterOp) -> Result<()> {
        if self.permissions.can_anyone_write() {
            return Ok(()); // anyone can write, so no need to check the signature
        }
        self.check_user_permissions(op.source)?;
        op.verify_signature(&op.source)
    }

    /// Helper to check user write permissions for the given requester's public key.
    ///
    /// Returns:
    /// `Ok(())` if the user can write to this register
    /// `Err::AccessDenied` if the user cannot write to this register
    pub fn check_user_permissions(&self, requester: PublicKey) -> Result<()> {
        if self.permissions.can_write(&requester) {
            Ok(())
        } else {
            Err(Error::AccessDenied(requester))
        }
    }

    /// Access the underlying MerkleReg (e.g. for access to history)
    /// NOTE: This API is unstable and may be removed in the future
    pub fn merkle_reg(&self) -> &MerkleReg<Entry> {
        self.crdt.merkle_reg()
    }

    // Private helper to check the given Entry's size is within define limit,
    // as well as check the Register hasn't already reached the maximum number of entries.
    fn check_entry_and_reg_sizes(&self, entry: &Entry) -> Result<()> {
        let size = entry.len();
        if size > MAX_REG_ENTRY_SIZE {
            return Err(Error::EntryTooBig {
                size,
                max: MAX_REG_ENTRY_SIZE,
            });
        }

        let reg_size = self.crdt.size();
        if reg_size >= MAX_REG_NUM_ENTRIES.into() {
            return Err(Error::TooManyEntries(reg_size as usize));
        }

        Ok(())
    }

    // Private helper to check if this Register is mergeable with another
    fn verify_is_mergeable(&self, other: &Self) -> Result<()> {
        if self.address() != other.address() || self.permissions != other.permissions {
            return Err(Error::DifferentBaseRegister);
        }
        Ok(())
    }

    /// Used in tests.
    #[cfg(feature = "test-utils")]
    pub fn test_new_from_address(address: RegisterAddress) -> Self {
        Register {
            crdt: RegisterCrdt::new(address),
            permissions: Permissions::AnyoneCanWrite,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::RegisterOp;

    use super::{
        EntryHash, Error, Permissions, Register, RegisterAddress, Result, MAX_REG_NUM_ENTRIES,
    };

    use bls::SecretKey;
    use eyre::Context;
    use proptest::prelude::*;
    use rand::{rngs::OsRng, seq::SliceRandom, thread_rng, Rng};
    use std::{collections::BTreeSet, sync::Arc};
    use xor_name::XorName;

    #[test]
    fn register_create() {
        let meta = xor_name::rand::random();
        let (authority_sk, register) = &gen_reg_replicas(None, meta, None, 1)[0];

        let authority = authority_sk.public_key();
        assert_eq!(register.owner(), authority);
        assert_eq!(register.owner(), authority);

        let address = RegisterAddress::new(meta, authority);
        assert_eq!(*register.address(), address);
    }

    #[test]
    fn register_generate_entry_hash() -> eyre::Result<()> {
        let authority_sk = SecretKey::random();
        let authority = authority_sk.public_key();

        let meta: XorName = xor_name::rand::random();

        let mut replica1 = Register::new(authority, meta, Permissions::default());
        let mut replica2 = Register::new(authority, meta, Permissions::default());

        // Different item from same replica's root shall having different entry_hash
        let item1 = random_register_entry();
        let item2 = random_register_entry();
        let (entry_hash1_1, _) = replica1.write(item1.clone(), &BTreeSet::new(), &authority_sk)?;
        let (entry_hash1_2, _) = replica1.write(item2, &BTreeSet::new(), &authority_sk)?;
        assert!(entry_hash1_1 != entry_hash1_2);

        // Same item from different replica's root shall remain same
        let (entry_hash2_1, _) = replica2.write(item1, &BTreeSet::new(), &authority_sk)?;
        assert_eq!(entry_hash1_1, entry_hash2_1);

        let mut parents = BTreeSet::new();
        // Different item from different replica with same parents shall be different
        let _ = parents.insert(entry_hash1_1);
        let item3 = random_register_entry();
        let item4 = random_register_entry();
        let (entry_hash1_1_3, _) = replica1.write(item3, &parents, &authority_sk)?;
        let (entry_hash2_1_4, _) = replica2.write(item4, &parents, &authority_sk)?;
        assert!(entry_hash1_1_3 != entry_hash2_1_4);

        Ok(())
    }

    #[test]
    fn register_permissions() -> eyre::Result<()> {
        let owner_sk = SecretKey::random();
        let owner = owner_sk.public_key();
        let other_user_sk = SecretKey::random();
        let other_user = other_user_sk.public_key();

        let meta: XorName = xor_name::rand::random();
        let item = random_register_entry();

        // Create replicas where anyone can write to them, including the owner ofc
        let mut replica1 = Register::new(owner, meta, Permissions::new_anyone_can_write());
        let mut replica2 = replica1.clone();
        let mut signed_replica3 = replica1.clone().into_signed(&owner_sk)?;
        // ...owner and the other user can both write to them
        let (_, op1) = replica1.write(item.clone(), &BTreeSet::new(), &owner_sk)?;
        let (_, op2) = replica1.write(item.clone(), &BTreeSet::new(), &other_user_sk)?;
        replica2.apply_op(op1)?;
        replica2.apply_op(op2)?;
        signed_replica3.verified_merge(&replica2.into_signed(&owner_sk)?)?;

        // Create replicas allowing both the owner and other user to write to them
        let mut replica1 = Register::new(owner, meta, Permissions::new_with([other_user]));
        let mut replica2 = replica1.clone();
        let mut signed_replica3 = replica1.clone().into_signed(&owner_sk)?;
        // ...owner and the other user can both write to them
        let (_, op1) = replica1.write(item.clone(), &BTreeSet::new(), &owner_sk)?;
        let (_, op2) = replica1.write(item.clone(), &BTreeSet::new(), &other_user_sk)?;
        replica2.apply_op(op1)?;
        replica2.apply_op(op2)?;
        signed_replica3.verified_merge(&replica2.into_signed(&owner_sk)?)?;

        // Create replicas with the owner as the only allowed to write
        let mut replica1 = Register::new(owner, meta, Permissions::default());
        let mut replica2 = replica1.clone();
        // ...owner can write to them
        let (_, op) = replica1.write(item.clone(), &BTreeSet::new(), &owner_sk)?;
        replica2.apply_op(op.clone())?;
        // ...whilst other user cannot write to them
        let res = replica1.write(item.clone(), &BTreeSet::new(), &other_user_sk);
        assert!(
            matches!(&res, Err(err) if err == &Error::AccessDenied(other_user)),
            "Unexpected result: {res:?}"
        );
        let (_, address, crdt_op) = replica1.crdt.write(item.clone(), &BTreeSet::new())?;
        let op_signed_by_other_user = RegisterOp::new(address, crdt_op, &other_user_sk);
        let res = replica2.apply_op(op_signed_by_other_user);
        assert!(
            matches!(&res, Err(err) if err == &Error::AccessDenied(other_user)),
            "Unexpected result: {res:?}"
        );

        // Create Registers with different permissions to write
        let mut reg1 = Register::new(owner, meta, Permissions::default());
        let mut reg2 = Register::new(owner, meta, Permissions::new_with([other_user]));
        // ...owner can write to both of them, the other user only to one of them
        reg1.write(item.clone(), &BTreeSet::new(), &owner_sk)?;
        reg2.write(item.clone(), &BTreeSet::new(), &owner_sk)?;
        reg2.write(item.clone(), &BTreeSet::new(), &other_user_sk)?;
        // ...but they cannot be merged due to different permissions sets
        let res1 = reg1.merge(&reg2);
        let res2 = reg2.merge(&reg1);
        assert!(
            matches!(&res1, Err(err) if err == &Error::DifferentBaseRegister),
            "Unexpected result: {res1:?}"
        );
        assert_eq!(res1, res2);

        let mut signed_reg1 = reg1.into_signed(&owner_sk)?;
        let mut signed_reg2 = reg2.into_signed(&owner_sk)?;
        let res1 = signed_reg1.verified_merge(&signed_reg2);
        let res2 = signed_reg2.verified_merge(&signed_reg1);
        assert!(
            matches!(&res1, Err(err) if err == &Error::DifferentBaseRegister),
            "Unexpected result: {res1:?}"
        );
        assert_eq!(res1, res2);

        Ok(())
    }

    #[test]
    fn register_concurrent_write_ops() -> eyre::Result<()> {
        let authority_sk1 = SecretKey::random();
        let authority1 = authority_sk1.public_key();
        let authority_sk2 = SecretKey::random();
        let authority2 = authority_sk2.public_key();

        let meta: XorName = xor_name::rand::random();

        // We'll have 'authority1' as the owner in both replicas and
        // grant permissions for Write to 'authority2' in both replicas too
        let perms = Permissions::new_with([authority1, authority2]);

        // Instantiate the same Register on two replicas
        let mut replica1 = Register::new(authority_sk1.public_key(), meta, perms);
        let mut replica2 = replica1.clone();

        // And let's write an item to replica1 with autority1
        let item1 = random_register_entry();
        let (_, op1) = replica1.write(item1, &BTreeSet::new(), &authority_sk1)?;

        // Let's assert current state on both replicas
        assert_eq!(replica1.size(), 1);
        assert_eq!(replica2.size(), 0);

        // Concurrently write another item with authority2 on replica2
        let item2 = random_register_entry();
        let (_, op2) = replica2.write(item2, &BTreeSet::new(), &authority_sk2)?;

        // Item should be writed on replica2
        assert_eq!(replica2.size(), 1);

        // Write operations are now broadcasted and applied to both replicas
        replica1.apply_op(op2)?;
        replica2.apply_op(op1)?;

        // Let's assert data convergence on both replicas
        verify_data_convergence(&[replica1, replica2], 2)?;

        Ok(())
    }

    #[test]
    fn register_get_by_hash() -> eyre::Result<()> {
        let (sk, register) = &mut create_reg_replicas(1)[0];

        let entry1 = random_register_entry();
        let entry2 = random_register_entry();
        let entry3 = random_register_entry();

        let (entry1_hash, _) = register.write(entry1.clone(), &BTreeSet::new(), sk)?;

        // this creates a fork since entry1 is not set as child of entry2
        let (entry2_hash, _) = register.write(entry2.clone(), &BTreeSet::new(), sk)?;

        // we'll write entry2 but having the entry1 and entry2 as children,
        // i.e. solving the fork created by them
        let children = [entry1_hash, entry2_hash].into_iter().collect();

        let (entry3_hash, _) = register.write(entry3.clone(), &children, sk)?;

        assert_eq!(register.size(), 3);

        let first_entry = register.get(entry1_hash)?;
        assert_eq!(first_entry, &entry1);

        let second_entry = register.get(entry2_hash)?;
        assert_eq!(second_entry, &entry2);

        let third_entry = register.get(entry3_hash)?;
        assert_eq!(third_entry, &entry3);

        let non_existing_hash = EntryHash::default();
        let entry_not_found = register.get(non_existing_hash);
        assert_eq!(entry_not_found, Err(Error::NoSuchEntry(non_existing_hash)));

        Ok(())
    }

    #[test]
    fn register_query_public_perms() -> eyre::Result<()> {
        let meta = xor_name::rand::random();

        // one register will allow write ops to anyone
        let authority_sk1 = SecretKey::random();
        let authority_pk1 = authority_sk1.public_key();
        let owner1 = authority_pk1;
        let perms1 = Permissions::new_anyone_can_write();
        let replica1 = create_reg_replica_with(meta, Some(authority_sk1), Some(perms1));

        // the other register will allow write ops to 'owner1' and 'owner2' only
        let authority_sk2 = SecretKey::random();
        let authority_pk2 = authority_sk2.public_key();
        let owner2 = authority_pk2;
        let perms2 = Permissions::new_with([owner1]);
        let replica2 = create_reg_replica_with(meta, Some(authority_sk2), Some(perms2));

        // dummy owner
        let sk_rand = SecretKey::random();
        let random_user = sk_rand.public_key();
        let sk_rand2 = SecretKey::random();
        let random_user2 = sk_rand2.public_key();

        // check register 1 is public
        assert_eq!(replica1.owner(), authority_pk1);
        assert_eq!(replica1.check_user_permissions(owner1), Ok(()));
        assert_eq!(replica1.check_user_permissions(owner2), Ok(()));
        assert_eq!(replica1.check_user_permissions(random_user), Ok(()));
        assert_eq!(replica1.check_user_permissions(random_user2), Ok(()));

        // check register 2 has only owner1 and owner2 write allowed
        assert_eq!(replica2.owner(), authority_pk2);
        assert_eq!(replica2.check_user_permissions(owner1), Ok(()));
        assert_eq!(replica2.check_user_permissions(owner2), Ok(()));
        assert_eq!(
            replica2.check_user_permissions(random_user),
            Err(Error::AccessDenied(random_user))
        );
        assert_eq!(
            replica2.check_user_permissions(random_user2),
            Err(Error::AccessDenied(random_user2))
        );

        Ok(())
    }

    #[test]
    fn exceeding_max_reg_entries_errors() -> eyre::Result<()> {
        let meta = xor_name::rand::random();

        // one replica will allow write ops to anyone
        let authority_sk1 = SecretKey::random();
        let perms1 = Permissions::new_anyone_can_write();

        let mut replica = create_reg_replica_with(meta, Some(authority_sk1), Some(perms1));

        for _ in 0..MAX_REG_NUM_ENTRIES {
            let (_hash, _op) = replica
                .write(
                    random_register_entry(),
                    &BTreeSet::new(),
                    &SecretKey::random(),
                )
                .context("Failed to write register entry")?;
        }

        let excess_entry = replica.write(
            random_register_entry(),
            &BTreeSet::new(),
            &SecretKey::random(),
        );

        match excess_entry {
            Err(Error::TooManyEntries(size)) => {
                assert_eq!(size, 1024);
                Ok(())
            }
            anything_else => {
                eyre::bail!(
                    "Expected Excess entries error was not found. Instead: {anything_else:?}"
                )
            }
        }
    }

    // Helpers for tests
    fn gen_reg_replicas(
        authority_sk: Option<SecretKey>,
        meta: XorName,
        perms: Option<Permissions>,
        count: usize,
    ) -> Vec<(SecretKey, Register)> {
        let replicas: Vec<(SecretKey, Register)> = (0..count)
            .map(|_| {
                let authority_sk = authority_sk.clone().unwrap_or_else(SecretKey::random);
                let authority = authority_sk.public_key();
                let perms = perms.clone().unwrap_or_default();
                let register = Register::new(authority, meta, perms);
                (authority_sk, register)
            })
            .collect();

        assert_eq!(replicas.len(), count);
        replicas
    }

    fn create_reg_replicas(count: usize) -> Vec<(SecretKey, Register)> {
        let meta = xor_name::rand::random();

        gen_reg_replicas(None, meta, None, count)
    }

    fn create_reg_replica_with(
        meta: XorName,
        authority_sk: Option<SecretKey>,
        perms: Option<Permissions>,
    ) -> Register {
        let replicas = gen_reg_replicas(authority_sk, meta, perms, 1);
        replicas[0].1.clone()
    }

    // verify data convergence on a set of replicas and with the expected length
    fn verify_data_convergence(replicas: &[Register], expected_size: u64) -> Result<()> {
        // verify all replicas have the same and expected size
        for r in replicas {
            assert_eq!(r.size(), expected_size);
        }

        // now verify that the items are the same in all replicas
        let r0 = &replicas[0];
        for r in replicas {
            assert_eq!(r.crdt, r0.crdt);
        }

        Ok(())
    }

    // Generate a vec of Register replicas of some length, with corresponding vec of keypairs for signing, and the overall owner of the register
    fn generate_replicas(
        max_quantity: usize,
    ) -> impl Strategy<Value = Result<(Vec<Register>, Arc<SecretKey>)>> {
        let xorname = xor_name::rand::random();

        let owner_sk = Arc::new(SecretKey::random());
        let owner = owner_sk.public_key();
        let perms = Permissions::new_anyone_can_write();

        (1..max_quantity + 1).prop_map(move |quantity| {
            let mut replicas = Vec::with_capacity(quantity);
            for _ in 0..quantity {
                let replica = Register::new(owner, xorname, perms.clone());

                replicas.push(replica);
            }

            Ok((replicas, owner_sk.clone()))
        })
    }

    // Generate a Register entry
    fn generate_reg_entry() -> impl Strategy<Value = Vec<u8>> {
        "\\PC*".prop_map(|s| s.into_bytes())
    }

    // Generate a vec of Register entries
    fn generate_dataset(max_quantity: usize) -> impl Strategy<Value = Vec<Vec<u8>>> {
        prop::collection::vec(generate_reg_entry(), 1..max_quantity + 1)
    }

    // Generates a vec of Register entries each with a value suggesting
    // the delivery chance of the op that gets created with the entry
    fn generate_dataset_and_probability(
        max_quantity: usize,
    ) -> impl Strategy<Value = Vec<(Vec<u8>, u8)>> {
        prop::collection::vec((generate_reg_entry(), any::<u8>()), 1..max_quantity + 1)
    }

    proptest! {
        #[test]
        fn proptest_reg_doesnt_crash_with_random_data(
            _data in generate_reg_entry()
        ) {
            // Instantiate the same Register on two replicas
            let meta = xor_name::rand::random();
            let owner_sk = SecretKey::random();
            let perms = Default::default();

            let mut replicas = gen_reg_replicas(
                Some(owner_sk.clone()),
                meta,
                Some(perms),
                2);
            let (_, mut replica1) = replicas.remove(0);
            let (_, mut replica2) = replicas.remove(0);

            // Write an item on replicas
            let (_, op) = replica1.write(random_register_entry(), &BTreeSet::new(), &owner_sk)?;
            replica2.apply_op(op)?;

            verify_data_convergence(&[replica1, replica2], 1)?;
        }

        #[test]
        fn proptest_reg_converge_with_many_random_data(
            dataset in generate_dataset(1000)
        ) {
            // Instantiate the same Register on two replicas
            let meta = xor_name::rand::random();
            let owner_sk = SecretKey::random();
            let perms = Default::default();

            // Instantiate the same Register on two replicas
            let mut replicas = gen_reg_replicas(
                Some(owner_sk.clone()),
                meta,
                Some(perms),
                2);
            let (_, mut replica1) = replicas.remove(0);
            let (_, mut replica2) = replicas.remove(0);

            let dataset_length = dataset.len() as u64;

            // insert our data at replicas
            let mut children = BTreeSet::new();
            for _data in dataset {
                // Write an item on replica1
                let (hash, op) = replica1.write(random_register_entry(), &children, &owner_sk)?;
                // now apply that op to replica 2
                replica2.apply_op(op)?;
                children = vec![hash].into_iter().collect();
            }

            verify_data_convergence(&[replica1, replica2], dataset_length)?;
        }

        #[test]
        fn proptest_reg_converge_with_many_random_data_random_entry_children(
            dataset in generate_dataset(1000)
        ) {
            // Instantiate the same Register on two replicas
            let meta = xor_name::rand::random();
            let owner_sk = SecretKey::random();
            let perms = Default::default();

            // Instantiate the same Register on two replicas
            let mut replicas = gen_reg_replicas(
                Some(owner_sk.clone()),
                meta,
                Some(perms),
                2);
            let (_, mut replica1) = replicas.remove(0);
            let (_, mut replica2) = replicas.remove(0);

            let dataset_length = dataset.len() as u64;

            // insert our data at replicas
            let mut list_of_hashes = Vec::new();
            let mut rng = thread_rng();
            for _data in dataset {
                // choose a random set of children
                let num_of_children: usize = rng.gen();
                let children = list_of_hashes.choose_multiple(&mut OsRng, num_of_children).cloned().collect();

                // Write an item on replica1 using the randomly generated set of children
                let (hash, op) = replica1.write(random_register_entry(), &children, &owner_sk)?;

                // now apply that op to replica 2
                replica2.apply_op(op)?;
                list_of_hashes.push(hash);
            }

            verify_data_convergence(&[replica1, replica2], dataset_length)?;
        }

        #[test]
        fn proptest_reg_converge_with_many_random_data_across_arbitrary_number_of_replicas(
            dataset in generate_dataset(500),
            res in generate_replicas(50)
        ) {
            let (mut replicas, owner_sk) = res?;
            let dataset_length = dataset.len() as u64;

            // insert our data at replicas
            let mut children = BTreeSet::new();
            for _data in dataset {
                // first generate an op from one replica...
                let (hash, op)= replicas[0].write(random_register_entry(), &children, &owner_sk)?;

                // then apply this to all replicas
                for replica in &mut replicas {
                    replica.apply_op(op.clone())?;
                }
                children = vec![hash].into_iter().collect();
            }

            verify_data_convergence(&replicas, dataset_length)?;

        }

        #[test]
        fn proptest_converge_with_shuffled_op_set_across_arbitrary_number_of_replicas(
            dataset in generate_dataset(100),
            res in generate_replicas(500)
        ) {
            let (mut replicas, owner_sk) = res?;
            let dataset_length = dataset.len() as u64;

            // generate an ops set from one replica
            let mut ops = vec![];

            let mut children = BTreeSet::new();
            for _data in dataset {
                let (hash, op) = replicas[0].write(random_register_entry(), &children, &owner_sk)?;
                ops.push(op);
                children = vec![hash].into_iter().collect();
            }

            // now we randomly shuffle ops and apply at each replica
            for replica in &mut replicas {
                let mut ops = ops.clone();
                ops.shuffle(&mut OsRng);

                for op in ops {
                    replica.apply_op(op)?;
                }
            }

            verify_data_convergence(&replicas, dataset_length)?;
        }

        #[test]
        fn proptest_converge_with_shuffled_ops_from_many_replicas_across_arbitrary_number_of_replicas(
            dataset in generate_dataset(1000),
            res in generate_replicas(7)
        ) {
            let (mut replicas, owner_sk) = res?;
            let dataset_length = dataset.len() as u64;

            // generate an ops set using random replica for each data
            let mut ops = vec![];
            let mut children = BTreeSet::new();
            for _data in dataset {
                if let Some(replica) = replicas.choose_mut(&mut OsRng)
                {
                    let (hash, op) = replica.write(random_register_entry(), &children, &owner_sk)?;
                    ops.push(op);
                    children = vec![hash].into_iter().collect();
                }
            }

            let opslen = ops.len() as u64;
            prop_assert_eq!(dataset_length, opslen);

            // now we randomly shuffle ops and apply at each replica
            for replica in &mut replicas {
                let mut ops = ops.clone();
                ops.shuffle(&mut OsRng);

                for op in ops {
                    replica.apply_op(op)?;
                }
            }

            verify_data_convergence(&replicas, dataset_length)?;
        }

        #[test]
        fn proptest_dropped_data_can_be_reapplied_and_we_converge(
            dataset in generate_dataset_and_probability(1000),
        ) {
            // Instantiate the same Register on two replicas
            let meta = xor_name::rand::random();
            let owner_sk = SecretKey::random();
            let perms = Default::default();

            // Instantiate the same Register on two replicas
            let mut replicas = gen_reg_replicas(
                Some(owner_sk.clone()),
                meta,
                Some(perms),
                2);
            let (_, mut replica1) = replicas.remove(0);
            let (_, mut replica2) = replicas.remove(0);

            let dataset_length = dataset.len() as u64;

            let mut ops = vec![];
            let mut children = BTreeSet::new();
            for (_data, delivery_chance) in dataset {
                let (hash, op)= replica1.write(random_register_entry(), &children, &owner_sk)?;

                ops.push((op, delivery_chance));
                children = vec![hash].into_iter().collect();
            }

            for (op, delivery_chance) in ops.clone() {
                if delivery_chance < u8::MAX / 3 {
                    replica2.apply_op(op)?;
                }
            }

            // here we statistically should have dropped some messages
            if dataset_length > 50 {
                assert_ne!(replica2.size(), replica1.size());
            }

            // reapply all ops
            for (op, _) in ops {
                replica2.apply_op(op)?;
            }

            // now we converge
            verify_data_convergence(&[replica1, replica2], dataset_length)?;
        }

        #[test]
        fn proptest_converge_with_shuffled_ops_from_many_while_dropping_some_at_random(
            dataset in generate_dataset_and_probability(1000),
            res in generate_replicas(7),
        ) {
            let (mut replicas, owner_sk) = res?;
            let dataset_length = dataset.len() as u64;

            // generate an ops set using random replica for each data
            let mut ops = vec![];
            let mut children = BTreeSet::new();
            for (_data, delivery_chance) in dataset {
                // a random index within the replicas range
                let index: usize = OsRng.gen_range(0..replicas.len());
                let replica = &mut replicas[index];

                let (hash, op)=replica.write(random_register_entry(), &children, &owner_sk)?;
                ops.push((op, delivery_chance));
                children = vec![hash].into_iter().collect();
            }

            let opslen = ops.len() as u64;
            prop_assert_eq!(dataset_length, opslen);

            // now we randomly shuffle ops and apply at each replica
            for replica in &mut replicas {
                let mut ops = ops.clone();
                ops.shuffle(&mut OsRng);

                for (op, delivery_chance) in ops.clone() {
                    if delivery_chance > u8::MAX / 3 {
                        replica.apply_op(op)?;
                    }
                }

                // reapply all ops, simulating lazy messaging filling in the gaps
                for (op, _) in ops {
                    replica.apply_op(op)?;
                }
            }

            verify_data_convergence(&replicas, dataset_length)?;
        }

        #[test]
        fn proptest_converge_with_shuffled_ops_including_bad_ops_which_error_and_are_not_applied(
            dataset in generate_dataset(10),
            bogus_dataset in generate_dataset(10), // should be same number as dataset
            gen_replicas_result in generate_replicas(10),

        ) {
            let (mut replicas, owner_sk) = gen_replicas_result?;
            let dataset_length = dataset.len();
            let bogus_dataset_length = bogus_dataset.len();
            let number_replicas = replicas.len();

            // generate the real ops set using random replica for each data
            let mut ops = vec![];
            let mut children = BTreeSet::new();
            for _data in dataset {
                if let Some(replica) = replicas.choose_mut(&mut OsRng)
                {
                    let (hash, op)=replica.write(random_register_entry(), &children, &owner_sk)?;
                    ops.push(op);
                    children = vec![hash].into_iter().collect();
                }
            }

            // set up a replica that has nothing to do with the rest, random xor... different owner...
            let xorname = xor_name::rand::random();
            let random_owner_sk = SecretKey::random();
            let mut bogus_replica = Register::new(random_owner_sk.public_key(), xorname, Permissions::default());

            // add bogus ops from bogus replica + bogus data
            let mut children = BTreeSet::new();
            for _data in bogus_dataset {
                let (hash, bogus_op) = bogus_replica.write(random_register_entry(), &children, &random_owner_sk)?;
                bogus_replica.apply_op(bogus_op.clone())?;
                ops.push(bogus_op);
                children = vec![hash].into_iter().collect();
            }

            let opslen = ops.len();
            prop_assert_eq!(dataset_length + bogus_dataset_length, opslen);

            let mut err_count = vec![];
            // now we randomly shuffle ops and apply at each replica
            for replica in &mut replicas {
                let mut ops = ops.clone();
                ops.shuffle(&mut OsRng);

                for op in ops {
                    match replica.apply_op(op) {
                        Ok(_) => {},
                        // record all errors to check this matches bogus data
                        Err(error) => {err_count.push(error)},
                    }
                }
            }

            // check we get an error per bogus datum per replica
            assert_eq!(err_count.len(), bogus_dataset_length * number_replicas);

            verify_data_convergence(&replicas, dataset_length as u64)?;
        }
    }

    fn random_register_entry() -> Vec<u8> {
        let random_bytes = thread_rng().gen::<[u8; 32]>();
        random_bytes.to_vec()
    }
}