1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright 2020 MaidSafe.net limited.
//
// This SAFE Network Software is licensed to you under the MIT license <LICENSE-MIT
// https://opensource.org/licenses/MIT> or the Modified BSD license <LICENSE-BSD
// https://opensource.org/licenses/BSD-3-Clause>, at your option. This file may not be copied,
// modified, or distributed except according to those terms. Please review the Licences for the
// specific language governing permissions and limitations relating to use of the SAFE Network
// Software.

//! Module providing keys, keypairs, and signatures.
//!
//! The easiest way to get a `PublicKey` is to create a random `Keypair` first through one of the
//! `new` functions. A `PublicKey` can't be generated by itself; it must always be derived from a
//! secret key.

use crate::{utils, Error, Result};
use crate::{Keypair, Signature};
use hex_fmt::HexFmt;

use serde::{Deserialize, Serialize};
use signature::Verifier;
use std::{
    cmp::Ordering,
    fmt::{self, Debug, Display, Formatter},
    hash::{Hash, Hasher},
};
// use threshold_crypto::{self};
use xor_name::{XorName, XOR_NAME_LEN};

/// Wrapper for different public key types.
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
pub enum PublicKey {
    /// Ed25519 public key.
    Ed25519(ed25519_dalek::PublicKey),
    /// BLS public key.
    Bls(threshold_crypto::PublicKey),
    /// BLS public key share.
    BlsShare(threshold_crypto::PublicKeyShare),
}

impl PublicKey {
    /// Returns the ed25519 key, if applicable.
    pub fn ed25519(&self) -> Option<ed25519_dalek::PublicKey> {
        if let Self::Ed25519(key) = self {
            Some(*key)
        } else {
            None
        }
    }

    /// Returns the BLS key, if applicable.
    pub fn bls(&self) -> Option<threshold_crypto::PublicKey> {
        if let Self::Bls(key) = self {
            Some(*key)
        } else {
            None
        }
    }

    /// Returns the BLS key share, if applicable.
    pub fn bls_share(&self) -> Option<threshold_crypto::PublicKeyShare> {
        if let Self::BlsShare(key) = self {
            Some(*key)
        } else {
            None
        }
    }

    /// Returns `Ok(())` if `signature` matches the message and `Err(Error::InvalidSignature)`
    /// otherwise.
    pub fn verify<T: AsRef<[u8]>>(&self, signature: &Signature, data: T) -> Result<()> {
        let is_valid = match (self, signature) {
            (Self::Ed25519(pub_key), Signature::Ed25519(sig)) => {
                pub_key.verify(data.as_ref(), sig).is_ok()
            }
            (Self::Bls(pub_key), Signature::Bls(sig)) => pub_key.verify(sig, data),
            (Self::BlsShare(pub_key), Signature::BlsShare(sig)) => pub_key.verify(&sig.share, data),
            _ => return Err(Error::SigningKeyTypeMismatch),
        };
        if is_valid {
            Ok(())
        } else {
            Err(Error::InvalidSignature)
        }
    }

    /// Returns the `PublicKey` serialised and encoded in z-base-32.
    pub fn encode_to_zbase32(&self) -> Result<String> {
        utils::encode(&self)
    }

    /// Creates from z-base-32 encoded string.
    pub fn decode_from_zbase32<I: AsRef<str>>(encoded: I) -> Result<Self> {
        utils::decode(encoded)
    }
}

#[allow(clippy::derive_hash_xor_eq)]
impl Hash for PublicKey {
    fn hash<H: Hasher>(&self, state: &mut H) {
        utils::serialise(&self).unwrap_or_default().hash(state)
    }
}

impl Ord for PublicKey {
    fn cmp(&self, other: &PublicKey) -> Ordering {
        utils::serialise(&self)
            .unwrap_or_default()
            .cmp(&utils::serialise(other).unwrap_or_default())
    }
}

impl PartialOrd for PublicKey {
    fn partial_cmp(&self, other: &PublicKey) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl From<PublicKey> for XorName {
    fn from(public_key: PublicKey) -> Self {
        let bytes = match public_key {
            PublicKey::Ed25519(pub_key) => {
                return XorName(pub_key.to_bytes());
            }
            PublicKey::Bls(pub_key) => pub_key.to_bytes(),
            PublicKey::BlsShare(pub_key) => pub_key.to_bytes(),
        };
        let mut xor_name = XorName::random();
        xor_name.0.clone_from_slice(&bytes[..XOR_NAME_LEN]);
        xor_name
    }
}

impl From<ed25519_dalek::PublicKey> for PublicKey {
    fn from(public_key: ed25519_dalek::PublicKey) -> Self {
        Self::Ed25519(public_key)
    }
}

impl From<threshold_crypto::PublicKey> for PublicKey {
    fn from(public_key: threshold_crypto::PublicKey) -> Self {
        Self::Bls(public_key)
    }
}

impl From<threshold_crypto::PublicKeyShare> for PublicKey {
    fn from(public_key: threshold_crypto::PublicKeyShare) -> Self {
        Self::BlsShare(public_key)
    }
}

impl From<&Keypair> for PublicKey {
    fn from(keypair: &Keypair) -> Self {
        keypair.public_key()
    }
}

impl Debug for PublicKey {
    fn fmt(&self, formatter: &mut Formatter) -> fmt::Result {
        write!(formatter, "PublicKey::")?;
        match self {
            Self::Ed25519(pub_key) => {
                write!(formatter, "Ed25519({:<8})", HexFmt(&pub_key.to_bytes()))
            }
            Self::Bls(pub_key) => write!(
                formatter,
                "Bls({:<8})",
                HexFmt(&pub_key.to_bytes()[..XOR_NAME_LEN])
            ),
            Self::BlsShare(pub_key) => write!(
                formatter,
                "BlsShare({:<8})",
                HexFmt(&pub_key.to_bytes()[..XOR_NAME_LEN])
            ),
        }
    }
}

impl Display for PublicKey {
    fn fmt(&self, formatter: &mut Formatter) -> fmt::Result {
        Debug::fmt(self, formatter)
    }
}

#[cfg(test)]
pub(crate) mod tests {
    use super::*;
    use crate::utils;
    use threshold_crypto::{self};

    fn gen_keypairs() -> Vec<Keypair> {
        let mut rng = rand::thread_rng();
        let bls_secret_key = threshold_crypto::SecretKeySet::random(1, &mut rng);
        vec![
            Keypair::new_ed25519(&mut rng),
            Keypair::new_bls_share(
                0,
                bls_secret_key.secret_key_share(0),
                bls_secret_key.public_keys(),
            ),
        ]
    }

    pub fn gen_keys() -> Vec<PublicKey> {
        gen_keypairs().iter().map(PublicKey::from).collect()
    }

    #[test]
    fn zbase32_encode_decode_public_key() -> Result<()> {
        let keys = gen_keys();

        for key in keys {
            assert_eq!(
                key,
                PublicKey::decode_from_zbase32(&key.encode_to_zbase32()?)?
            );
        }

        Ok(())
    }

    // Test serialising and deserialising public keys.
    #[test]
    fn serialisation_public_key() -> Result<()> {
        let keys = gen_keys();

        for key in keys {
            let encoded = utils::serialise(&key)?;
            let decoded: PublicKey = utils::deserialise(&encoded)?;

            assert_eq!(decoded, key);
        }

        Ok(())
    }
}