1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
use byteorder::{ByteOrder, NetworkEndian};
use core::fmt;

use super::{Error, Result};

enum_with_unknown! {
    /// Ethernet protocol type.
    pub enum EtherType(u16) {
        Ipv4 = 0x0800,
        Arp  = 0x0806,
        Ipv6 = 0x86DD
    }
}

impl fmt::Display for EtherType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            EtherType::Ipv4 => write!(f, "IPv4"),
            EtherType::Ipv6 => write!(f, "IPv6"),
            EtherType::Arp => write!(f, "ARP"),
            EtherType::Unknown(id) => write!(f, "0x{id:04x}"),
        }
    }
}

/// A six-octet Ethernet II address.
#[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Address(pub [u8; 6]);

impl Address {
    /// The broadcast address.
    pub const BROADCAST: Address = Address([0xff; 6]);

    /// Construct an Ethernet address from a sequence of octets, in big-endian.
    ///
    /// # Panics
    /// The function panics if `data` is not six octets long.
    pub fn from_bytes(data: &[u8]) -> Address {
        let mut bytes = [0; 6];
        bytes.copy_from_slice(data);
        Address(bytes)
    }

    /// Return an Ethernet address as a sequence of octets, in big-endian.
    pub const fn as_bytes(&self) -> &[u8] {
        &self.0
    }

    /// Query whether the address is an unicast address.
    pub fn is_unicast(&self) -> bool {
        !(self.is_broadcast() || self.is_multicast())
    }

    /// Query whether this address is the broadcast address.
    pub fn is_broadcast(&self) -> bool {
        *self == Self::BROADCAST
    }

    /// Query whether the "multicast" bit in the OUI is set.
    pub const fn is_multicast(&self) -> bool {
        self.0[0] & 0x01 != 0
    }

    /// Query whether the "locally administered" bit in the OUI is set.
    pub const fn is_local(&self) -> bool {
        self.0[0] & 0x02 != 0
    }
}

impl fmt::Display for Address {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let bytes = self.0;
        write!(
            f,
            "{:02x}-{:02x}-{:02x}-{:02x}-{:02x}-{:02x}",
            bytes[0], bytes[1], bytes[2], bytes[3], bytes[4], bytes[5]
        )
    }
}

/// A read/write wrapper around an Ethernet II frame buffer.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Frame<T: AsRef<[u8]>> {
    buffer: T,
}

mod field {
    use crate::wire::field::*;

    pub const DESTINATION: Field = 0..6;
    pub const SOURCE: Field = 6..12;
    pub const ETHERTYPE: Field = 12..14;
    pub const PAYLOAD: Rest = 14..;
}

/// The Ethernet header length
pub const HEADER_LEN: usize = field::PAYLOAD.start;

impl<T: AsRef<[u8]>> Frame<T> {
    /// Imbue a raw octet buffer with Ethernet frame structure.
    pub const fn new_unchecked(buffer: T) -> Frame<T> {
        Frame { buffer }
    }

    /// Shorthand for a combination of [new_unchecked] and [check_len].
    ///
    /// [new_unchecked]: #method.new_unchecked
    /// [check_len]: #method.check_len
    pub fn new_checked(buffer: T) -> Result<Frame<T>> {
        let packet = Self::new_unchecked(buffer);
        packet.check_len()?;
        Ok(packet)
    }

    /// Ensure that no accessor method will panic if called.
    /// Returns `Err(Error)` if the buffer is too short.
    pub fn check_len(&self) -> Result<()> {
        let len = self.buffer.as_ref().len();
        if len < HEADER_LEN {
            Err(Error)
        } else {
            Ok(())
        }
    }

    /// Consumes the frame, returning the underlying buffer.
    pub fn into_inner(self) -> T {
        self.buffer
    }

    /// Return the length of a frame header.
    pub const fn header_len() -> usize {
        HEADER_LEN
    }

    /// Return the length of a buffer required to hold a packet with the payload
    /// of a given length.
    pub const fn buffer_len(payload_len: usize) -> usize {
        HEADER_LEN + payload_len
    }

    /// Return the destination address field.
    #[inline]
    pub fn dst_addr(&self) -> Address {
        let data = self.buffer.as_ref();
        Address::from_bytes(&data[field::DESTINATION])
    }

    /// Return the source address field.
    #[inline]
    pub fn src_addr(&self) -> Address {
        let data = self.buffer.as_ref();
        Address::from_bytes(&data[field::SOURCE])
    }

    /// Return the EtherType field, without checking for 802.1Q.
    #[inline]
    pub fn ethertype(&self) -> EtherType {
        let data = self.buffer.as_ref();
        let raw = NetworkEndian::read_u16(&data[field::ETHERTYPE]);
        EtherType::from(raw)
    }
}

impl<'a, T: AsRef<[u8]> + ?Sized> Frame<&'a T> {
    /// Return a pointer to the payload, without checking for 802.1Q.
    #[inline]
    pub fn payload(&self) -> &'a [u8] {
        let data = self.buffer.as_ref();
        &data[field::PAYLOAD]
    }
}

impl<T: AsRef<[u8]> + AsMut<[u8]>> Frame<T> {
    /// Set the destination address field.
    #[inline]
    pub fn set_dst_addr(&mut self, value: Address) {
        let data = self.buffer.as_mut();
        data[field::DESTINATION].copy_from_slice(value.as_bytes())
    }

    /// Set the source address field.
    #[inline]
    pub fn set_src_addr(&mut self, value: Address) {
        let data = self.buffer.as_mut();
        data[field::SOURCE].copy_from_slice(value.as_bytes())
    }

    /// Set the EtherType field.
    #[inline]
    pub fn set_ethertype(&mut self, value: EtherType) {
        let data = self.buffer.as_mut();
        NetworkEndian::write_u16(&mut data[field::ETHERTYPE], value.into())
    }

    /// Return a mutable pointer to the payload.
    #[inline]
    pub fn payload_mut(&mut self) -> &mut [u8] {
        let data = self.buffer.as_mut();
        &mut data[field::PAYLOAD]
    }
}

impl<T: AsRef<[u8]>> AsRef<[u8]> for Frame<T> {
    fn as_ref(&self) -> &[u8] {
        self.buffer.as_ref()
    }
}

impl<T: AsRef<[u8]>> fmt::Display for Frame<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "EthernetII src={} dst={} type={}",
            self.src_addr(),
            self.dst_addr(),
            self.ethertype()
        )
    }
}

use crate::wire::pretty_print::{PrettyIndent, PrettyPrint};

impl<T: AsRef<[u8]>> PrettyPrint for Frame<T> {
    fn pretty_print(
        buffer: &dyn AsRef<[u8]>,
        f: &mut fmt::Formatter,
        indent: &mut PrettyIndent,
    ) -> fmt::Result {
        let frame = match Frame::new_checked(buffer) {
            Err(err) => return write!(f, "{indent}({err})"),
            Ok(frame) => frame,
        };
        write!(f, "{indent}{frame}")?;

        match frame.ethertype() {
            #[cfg(feature = "proto-ipv4")]
            EtherType::Arp => {
                indent.increase(f)?;
                super::ArpPacket::<&[u8]>::pretty_print(&frame.payload(), f, indent)
            }
            #[cfg(feature = "proto-ipv4")]
            EtherType::Ipv4 => {
                indent.increase(f)?;
                super::Ipv4Packet::<&[u8]>::pretty_print(&frame.payload(), f, indent)
            }
            #[cfg(feature = "proto-ipv6")]
            EtherType::Ipv6 => {
                indent.increase(f)?;
                super::Ipv6Packet::<&[u8]>::pretty_print(&frame.payload(), f, indent)
            }
            _ => Ok(()),
        }
    }
}

/// A high-level representation of an Internet Protocol version 4 packet header.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Repr {
    pub src_addr: Address,
    pub dst_addr: Address,
    pub ethertype: EtherType,
}

impl Repr {
    /// Parse an Ethernet II frame and return a high-level representation.
    pub fn parse<T: AsRef<[u8]> + ?Sized>(frame: &Frame<&T>) -> Result<Repr> {
        frame.check_len()?;
        Ok(Repr {
            src_addr: frame.src_addr(),
            dst_addr: frame.dst_addr(),
            ethertype: frame.ethertype(),
        })
    }

    /// Return the length of a header that will be emitted from this high-level representation.
    pub const fn buffer_len(&self) -> usize {
        HEADER_LEN
    }

    /// Emit a high-level representation into an Ethernet II frame.
    pub fn emit<T: AsRef<[u8]> + AsMut<[u8]>>(&self, frame: &mut Frame<T>) {
        frame.set_src_addr(self.src_addr);
        frame.set_dst_addr(self.dst_addr);
        frame.set_ethertype(self.ethertype);
    }
}

#[cfg(test)]
mod test {
    // Tests that are valid with any combination of
    // "proto-*" features.
    use super::*;

    #[test]
    fn test_broadcast() {
        assert!(Address::BROADCAST.is_broadcast());
        assert!(!Address::BROADCAST.is_unicast());
        assert!(Address::BROADCAST.is_multicast());
        assert!(Address::BROADCAST.is_local());
    }
}

#[cfg(test)]
#[cfg(feature = "proto-ipv4")]
mod test_ipv4 {
    // Tests that are valid only with "proto-ipv4"
    use super::*;

    static FRAME_BYTES: [u8; 64] = [
        0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x08, 0x00, 0xaa,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0xff,
    ];

    static PAYLOAD_BYTES: [u8; 50] = [
        0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0xff,
    ];

    #[test]
    fn test_deconstruct() {
        let frame = Frame::new_unchecked(&FRAME_BYTES[..]);
        assert_eq!(
            frame.dst_addr(),
            Address([0x01, 0x02, 0x03, 0x04, 0x05, 0x06])
        );
        assert_eq!(
            frame.src_addr(),
            Address([0x11, 0x12, 0x13, 0x14, 0x15, 0x16])
        );
        assert_eq!(frame.ethertype(), EtherType::Ipv4);
        assert_eq!(frame.payload(), &PAYLOAD_BYTES[..]);
    }

    #[test]
    fn test_construct() {
        let mut bytes = vec![0xa5; 64];
        let mut frame = Frame::new_unchecked(&mut bytes);
        frame.set_dst_addr(Address([0x01, 0x02, 0x03, 0x04, 0x05, 0x06]));
        frame.set_src_addr(Address([0x11, 0x12, 0x13, 0x14, 0x15, 0x16]));
        frame.set_ethertype(EtherType::Ipv4);
        frame.payload_mut().copy_from_slice(&PAYLOAD_BYTES[..]);
        assert_eq!(&frame.into_inner()[..], &FRAME_BYTES[..]);
    }
}

#[cfg(test)]
#[cfg(feature = "proto-ipv6")]
mod test_ipv6 {
    // Tests that are valid only with "proto-ipv6"
    use super::*;

    static FRAME_BYTES: [u8; 54] = [
        0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x86, 0xdd, 0x60,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
    ];

    static PAYLOAD_BYTES: [u8; 40] = [
        0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
    ];

    #[test]
    fn test_deconstruct() {
        let frame = Frame::new_unchecked(&FRAME_BYTES[..]);
        assert_eq!(
            frame.dst_addr(),
            Address([0x01, 0x02, 0x03, 0x04, 0x05, 0x06])
        );
        assert_eq!(
            frame.src_addr(),
            Address([0x11, 0x12, 0x13, 0x14, 0x15, 0x16])
        );
        assert_eq!(frame.ethertype(), EtherType::Ipv6);
        assert_eq!(frame.payload(), &PAYLOAD_BYTES[..]);
    }

    #[test]
    fn test_construct() {
        let mut bytes = vec![0xa5; 54];
        let mut frame = Frame::new_unchecked(&mut bytes);
        frame.set_dst_addr(Address([0x01, 0x02, 0x03, 0x04, 0x05, 0x06]));
        frame.set_src_addr(Address([0x11, 0x12, 0x13, 0x14, 0x15, 0x16]));
        frame.set_ethertype(EtherType::Ipv6);
        assert_eq!(PAYLOAD_BYTES.len(), frame.payload_mut().len());
        frame.payload_mut().copy_from_slice(&PAYLOAD_BYTES[..]);
        assert_eq!(&frame.into_inner()[..], &FRAME_BYTES[..]);
    }
}